Strings and Languages

Lecture 1
Tuesday, August 25, 2020

Algorithms \& Models of Computation

1.1
 Strings

Alphabet

An alphabet is a finite set of symbols.
Examples of alphabets:

- $\Sigma=\{0,1\}$,
- $\Sigma=\{a, b, c, \ldots, z\}$,
- ASCII.
- UTF8
- $\Sigma=\{\langle$ moveforward \rangle,\langle moveback $\rangle\}$

Alphabet

An alphabet is a finite set of symbols.
Examples of alphabets:

- $\Sigma=\{0,1\}$,
- $\Sigma=\{a, b, c, \ldots, z\}$,
- ASCII.
- UTF8.
- $\Sigma=\{\langle$ moveforward \rangle,\langle moveback $\rangle\}$

String Definitions

Definition

（1）A string／word over Σ is a finite sequence of symbols over Σ ．For example， ＇0101001＇，＇string＇，＇〈moveback〉〈rotate90〉＇
（2）ϵ is the empty string．
（0）The length of a string w（denoted by $|w|$ ）is the number of symbols in w ．For example，$|101|=3,|\epsilon|=0$
－For integer $\boldsymbol{n} \geq 0, \Sigma^{\boldsymbol{n}}$ is set of all strings over Σ of length \boldsymbol{n} ．Σ^{*} is the set of all strings over Σ ．

Inductive/recursive definition of strings

Formal definition of a string:

- ϵ is a string of length 0
- $a x$ is a string if $a \in \Sigma$ and x is a string. The length of $a x$ is $1+|x|$

The above definition helps prove statements rigorously via induction.

- Alternative recursive definition useful in some proofs: $x a$ is a string if $a \in \Sigma$ and x is a string. The length of $x a$ is $1+|x|$

Convention

- a, b, c, \ldots denote elements of Σ
- w, x, y, z, \ldots denote strings
- A, B, C, \ldots denote sets of strings

Much ado about nothing

- ϵ is a string containing no symbols. It is not a set
- $\{\epsilon\}$ is a set containing one string: the empty string. It is a set, not a string.
- \emptyset is the empty set. It contains no strings.
- $\{\emptyset\}$ is a set containing one element, which itself is a set that contains no elements.

Concatenation and properties

- If x and y are strings then $x y$ denotes their concatenation.
- concatenation defined recursively :
- $x y=y$ if $x=\epsilon$
- $x y=a(w y)$ if $x=a w$
- xy sometimes written as $x \bullet y$
- concatenation is associative: $(u v) w=u(v w)$ hence write $u v w \equiv(u v) w=u(v w)$
- not commutative: uv not necessarily equal to vu
- The identity element is the empty string ϵ

Concatenation and properties

- If x and y are strings then $x y$ denotes their concatenation.
- concatenation defined recursively :
- $x y=y$ if $x=\epsilon$
- $x y=a(w y)$ if $x=a w$
- $x y$ sometimes written as $x \bullet y$.
- concatenation is associative: $(u v) w=u(v w)$
hence write $u v w \equiv(u v) w=u(v w)$
- not commutative: uv not necessarily equal to vu
- The identity element is the emnty string

Concatenation and properties

- If x and y are strings then $x y$ denotes their concatenation.
- concatenation defined recursively :
- $x y=y$ if $x=\epsilon$
- $x y=a(w y)$ if $x=a w$
- $x y$ sometimes written as $x \bullet y$.
- concatenation is associative: $(\boldsymbol{u v}) \boldsymbol{w}=\boldsymbol{u}(v w)$ hence write $\boldsymbol{u v w} \equiv(\boldsymbol{u v}) \boldsymbol{w}=\boldsymbol{u}(v \boldsymbol{v})$
- not commutative: uv not necessarily equal to vu
- The identity element is the empty string ϵ

Concatenation and properties

- If x and y are strings then $x y$ denotes their concatenation.
- concatenation defined recursively :
- $x y=y$ if $x=\epsilon$
- $x y=a(w y)$ if $x=a w$
- $x y$ sometimes written as $x \bullet y$.
- concatenation is associative: $(\boldsymbol{u v}) \boldsymbol{w}=\boldsymbol{u}(v w)$ hence write $\boldsymbol{u v w} \equiv(\boldsymbol{u v}) \boldsymbol{w}=\boldsymbol{u}(v \boldsymbol{v})$
- not commutative: $\boldsymbol{u v}$ not necessarily equal to $\boldsymbol{v u}$
- The identity element is the empty string ϵ :

Concatenation and properties

- If x and y are strings then $x y$ denotes their concatenation.
- concatenation defined recursively :
- $x y=y$ if $x=\epsilon$
- $x y=a(w y)$ if $x=a w$
- $x y$ sometimes written as $x \bullet y$.
- concatenation is associative: $(\boldsymbol{u v}) \boldsymbol{w}=\boldsymbol{u}(v w)$ hence write $\boldsymbol{u v w} \equiv(\boldsymbol{u v}) \boldsymbol{w}=\boldsymbol{u}(v \boldsymbol{v})$
- not commutative: $\boldsymbol{u v}$ not necessarily equal to $v u$
- The identity element is the empty string ϵ :

$$
\boldsymbol{\epsilon} \boldsymbol{u}=\boldsymbol{u} \boldsymbol{\epsilon}=\boldsymbol{u}
$$

Substrings, prefix, suffix

Definition

v is substring of $w \Longleftrightarrow$ there exist strings x, y such that $w=x v y$.

- If $\boldsymbol{x}=\boldsymbol{\epsilon}$ then \boldsymbol{v} is a prefix of \boldsymbol{w}
- If $\boldsymbol{y}=\boldsymbol{\epsilon}$ then \boldsymbol{v} is a suffix of \boldsymbol{w}

String exponents

Definition

If w is a string then $w^{\boldsymbol{n}}$ is defined inductively as follows:
$w^{\boldsymbol{n}}=\boldsymbol{\epsilon}$ if $\boldsymbol{n}=\mathbf{0}$
$w^{n}=w w^{n-1}$ if $n>0$

Example: $(\text { blah })^{4}=$ blahblahblahblah.

Set Concatenation

Definition

Given two sets \boldsymbol{X} and \boldsymbol{Y} of strings (over some common alphabet Σ) the concatenation of \boldsymbol{X} and \boldsymbol{Y} is

$$
X Y=\{x y \mid x \in X, y \in Y\}
$$

Set Concatenation

Definition

Given two sets \boldsymbol{X} and \boldsymbol{Y} of strings (over some common alphabet Σ) the concatenation of \boldsymbol{X} and \boldsymbol{Y} is

$$
X Y=\{x y \mid x \in X, y \in Y\}
$$

Example

```
X = {fido, rover, spot },
Y ={fluffy, tabby }
XY = { fidofluffy, fidotabby, roverfluffy, ...}.
```


\sum^{*} and languages

Definition

(1) Σ^{n} is the set of all strings of length n. Defined inductively:
$\Sigma^{n}=\{\epsilon\}$ if $\boldsymbol{n}=0$
$\Sigma^{n}=\Sigma \Sigma^{n-1}$ if $n>0$
(2) $\Sigma^{*}=\cup_{n \geq 0} \Sigma^{n}$ is the set of all finite length strings
($\Sigma^{+}=\cup_{n \geq 1} \Sigma^{n}$ is the set of non-empty strings.

Definition

A language L is a set of strings over Σ. In other words $L \subseteq \sum^{*}$.

\sum^{*} and languages

Definition

(1) Σ^{n} is the set of all strings of length n. Defined inductively:
$\Sigma^{n}=\{\epsilon\}$ if $\boldsymbol{n}=0$
$\Sigma^{n}=\Sigma \Sigma^{n-1}$ if $n>0$
(2) $\Sigma^{*}=\cup_{n \geq 0} \Sigma^{n}$ is the set of all finite length strings
(0) $\Sigma^{+}=\cup_{n \geq 1} \Sigma^{n}$ is the set of non-empty strings.

Definition

A language L is a set of strings over Σ. In other words $L \subseteq \Sigma^{*}$.

Exercise

Answer the following questions taking $\Sigma=\{0,1\}$.
(1) What is Σ^{0} ?
(2) How many elements are there in Σ^{3} ?
(3) How many elements are there in \sum^{n} ?
(4) What is the length of the longest string in Σ ?
(5) Does Σ^{*} have strings of infinite length?
(6) If $|\boldsymbol{u}|=2$ and $|\boldsymbol{v}|=3$ then what is $|\boldsymbol{u} \bullet \boldsymbol{v}|$?
(3) Let \boldsymbol{u} be an arbitrary string in Σ^{*}. What is $\boldsymbol{\epsilon} \boldsymbol{u}$? What is $\boldsymbol{u} \boldsymbol{\epsilon}$?
(8) Is $u \boldsymbol{v}=\boldsymbol{v u}$ for every $u, v \in \Sigma^{*}$?
(0) Is $(u v) \boldsymbol{w}=\boldsymbol{u}(\boldsymbol{v} \boldsymbol{w})$ for every $u, v, w \in \Sigma^{*}$?

THE END

(for now)

