Algorithms & Models of Computation CS/ECE 374, Fall 2020

Strings and Languages

Lecture 1 Tuesday, August 25, 2020

LATEXed: May 28, 2020 11:04

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

1.1Strings

Alphabet

An alphabet is a finite set of symbols.

Examples of alphabets:

- $\Sigma = \{0, 1\},$
- $\bullet \ \Sigma = \{a, b, c, \ldots, z\},\$
- ASCII.
- UTF8.
- $\bullet \ \Sigma = \{\langle \mathbf{moveforward} \rangle, \ \langle \mathbf{moveback} \rangle\}$

Alphabet

An alphabet is a **finite** set of symbols.

Examples of alphabets:

- $\Sigma = \{0, 1\},$
- $\bullet \ \Sigma = \{a, b, c, \ldots, z\},\$
- ASCII.
- UTF8.
- $\bullet \ \ \Sigma = \{\langle \mathbf{moveforward} \rangle, \ \langle \mathbf{moveback} \rangle\}$

String Definitions

Definition

- **1** A string/word over Σ is a **finite sequence** of symbols over Σ . For example, '0101001', 'string', ' \langle moveback \rangle \langle rotate90 \rangle '
- The length of a string w (denoted by |w|) is the number of symbols in w. For example, |101| = 3, $|\epsilon| = 0$
- For integer $n \ge 0$, Σ^n is set of all strings over Σ of length n. Σ^* is the set of all strings over Σ .

Inductive/recursive definition of strings

Formal definition of a string:

- \bullet ϵ is a string of length 0
- ax is a string if $a \in \Sigma$ and x is a string. The length of ax is 1 + |x|

The above definition helps prove statements rigorously via induction.

• Alternative recursive definition useful in some proofs: xa is a string if $a \in \Sigma$ and x is a string. The length of xa is 1 + |x|

Convention

- a, b, c, \ldots denote elements of Σ
- w, x, y, z, \dots denote strings
- A, B, C, ... denote sets of strings

Much ado about nothing

- \bullet ϵ is a string containing no symbols. It is not a set
- $\{\epsilon\}$ is a set containing one string: the empty string. It is a set, not a string.
- Ø is the empty set. It contains no strings.
- $\{\emptyset\}$ is a set containing one element, which itself is a set that contains no elements.

- If x and y are strings then xy denotes their concatenation.
- concatenation defined recursively :
 - xy = y if $x = \epsilon$ • xy = a(wy) if x = aw
- xy sometimes written as $x \cdot y$.
- concatenation is **associative**: (uv)w = u(vw)hence write $uvw \equiv (uv)w = u(vw)$
- not commutative: uv not necessarily equal to vu
- The *identity* element is the empty string ϵ :

$$\epsilon u = u\epsilon = u$$
.

- If x and y are strings then xy denotes their concatenation.
- concatenation defined recursively :
 - xy = y if $x = \epsilon$ • xy = a(wy) if x = aw
- xy sometimes written as $x \cdot y$.
- concatenation is associative: (uv)w = u(vw)hence write $uvw \equiv (uv)w = u(vw)$
- not commutative: uv not necessarily equal to vu
- The *identity* element is the empty string ϵ :

$$\epsilon u = u\epsilon = u$$
.

- If x and y are strings then xy denotes their concatenation.
- concatenation defined recursively :
 - xy = y if $x = \epsilon$ • xy = a(wy) if x = aw
- xy sometimes written as $x \cdot y$.
- concatenation is associative: (uv)w = u(vw)hence write $uvw \equiv (uv)w = u(vw)$
- not commutative: uv not necessarily equal to vu
- The *identity* element is the empty string ϵ :

$$\epsilon u = u\epsilon = u$$
.

- If x and y are strings then xy denotes their concatenation.
- concatenation defined recursively :
 - xy = y if $x = \epsilon$ • xy = a(wy) if x = aw
- xy sometimes written as $x \cdot y$.
- concatenation is associative: (uv)w = u(vw)hence write $uvw \equiv (uv)w = u(vw)$
- not commutative: uv not necessarily equal to vu
- The *identity* element is the empty string ϵ :

$$\epsilon u = u\epsilon = u$$
.

- If x and y are strings then xy denotes their concatenation.
- concatenation defined recursively :
 - xy = y if $x = \epsilon$ • xy = a(wy) if x = aw
- xy sometimes written as $x \cdot y$.
- concatenation is associative: (uv)w = u(vw)hence write $uvw \equiv (uv)w = u(vw)$
- not commutative: uv not necessarily equal to vu
- The *identity* element is the empty string ϵ :

$$\epsilon u = u\epsilon = u$$
.

Substrings, prefix, suffix

Definition

- v is substring of $w \iff$ there exist strings x, y such that w = xvy.
 - If $x = \epsilon$ then v is a prefix of w
 - If $y = \epsilon$ then v is a suffix of w

String exponents

Definition

If w is a string then w^n is defined inductively as follows:

$$w^n = \epsilon$$
 if $n = 0$
 $w^n = ww^{n-1}$ if $n > 0$

Example: $(blah)^4 = blahblahblah$.

Set Concatenation

Definition

Given two sets X and Y of strings (over some common alphabet Σ) the concatenation of X and Y is

$$XY = \{xy \mid x \in X, y \in Y\}$$

Set Concatenation

Definition

Given two sets X and Y of strings (over some common alphabet Σ) the concatenation of X and Y is

$$XY = \{xy \mid x \in X, y \in Y\}$$

Example

```
X = \{fido, rover, spot\}.
Y = \{fluffy, tabby\}
```

$$XY = \{ fidofluffy, fidotabby, roverfluffy, \ldots \}.$$

Σ* and languages

Definition

1 Σ^n is the set of all strings of length n. Defined inductively:

$$\Sigma^{n} = \{\epsilon\} \text{ if } n = 0$$

 $\Sigma^{n} = \Sigma \Sigma^{n-1} \text{ if } n > 0$

- $\Sigma^* = \bigcup_{n \geq 0} \Sigma^n$ is the set of all finite length strings
- **3** $\Sigma^+ = \bigcup_{n \ge 1} \Sigma^n$ is the set of non-empty strings.

Definition

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Σ* and languages

Definition

1 Σ^n is the set of all strings of length n. Defined inductively:

$$\Sigma^{n} = \{\epsilon\} \text{ if } n = 0$$

 $\Sigma^{n} = \Sigma \Sigma^{n-1} \text{ if } n > 0$

- ② $\Sigma^* = \bigcup_{n \geq 0} \Sigma^n$ is the set of all finite length strings
- **3** $\Sigma^+ = \bigcup_{n \ge 1} \Sigma^n$ is the set of non-empty strings.

Definition

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Exercise

Answer the following questions taking $\Sigma = \{0, 1\}$.

- What is Σ^0 ?
- ② How many elements are there in Σ^3 ?
- **3** How many elements are there in Σ^n ?
- What is the length of the longest string in Σ ?
- **5** Does Σ^* have strings of infinite length?
- If |u| = 2 and |v| = 3 then what is $|u \cdot v|$?
- **②** Let u be an arbitrary string in Σ^* . What is ϵu ? What is $u\epsilon$?
- **1** Is uv = vu for every $u, v \in \Sigma^*$?
- Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

THE END

...

(for now)