1.1.1
 Exercise solved in detail

Exercise

Answer the following questions taking $\Sigma=\{0,1\}$.
(1) What is Σ^{0} ?
(2) How many elements are there in Σ^{3} ?
(3) How many elements are there in \sum^{n} ?
(1) What is the length of the longest string in Σ ?
(3) Does Σ^{*} have strings of infinite length?
(0) If $|\boldsymbol{u}|=2$ and $|\boldsymbol{v}|=3$ then what is $|u \cdot v|$?
© Let u be an arbitrary string in Σ^{*}. What is $\epsilon \boldsymbol{u}$? What is $u \in$?
© Is $u v=v u$ for every $u, v \in \Sigma^{*}$?
(0) Is $(u v) w=u(v w)$ for every $u, v, w \in \Sigma^{*}$?

Exercise

Answer the following questions taking $\Sigma=\{0,1\}$.
(1) What is Σ^{0} ?
(2) How many elements are there in Σ^{3} ?
(3) How many elements are there in \sum^{n} ?
(1) What is the length of the longest string in Σ ?
(3) Does Σ^{*} have strings of infinite length?
(0) If $|u|=2$ and $|v|=3$ then what is $|u \cdot v|$?
(3) Let u be an arbitrary string in Σ^{*}. What is ϵu ? What is $u \epsilon$?
((s $u \boldsymbol{v}=\boldsymbol{v u}$ for every $u, v \in \Sigma^{*}$?
© Is (uv)w=u(vw) for every $u, v, w \in \Sigma^{*}$?

Exercise

Answer the following questions taking $\Sigma=\{0,1\}$.
(1) What is Σ^{0} ?
(2) How many elements are there in Σ^{3} ?
(3) How many elements are there in \sum^{n} ?
(1) What is the length of the longest string in Σ ?
(3) Does Σ^{*} have strings of infinite length?
(6) If $|\boldsymbol{u}|=2$ and $|\boldsymbol{v}|=3$ then what is $|\boldsymbol{u} \bullet \boldsymbol{v}|$?
(O) Let u be an arbitrary string in Σ^{*}. What is ϵu ? What is $u \epsilon$?
((Is $u \boldsymbol{v}=\boldsymbol{v u}$ for every $u, v \in \Sigma^{*}$?
(0) Is $(u v) w=u(v w)$ for every $u, v, w \in \Sigma^{*}$?

Exercise

Answer the following questions taking $\Sigma=\{0,1\}$.
(1) What is Σ^{0} ?
(2) How many elements are there in Σ^{3} ?
(3) How many elements are there in \sum^{n} ?
(4) What is the length of the longest string in Σ ?
(3) Does Σ^{*} have strings of infinite length?
(0) If $|\boldsymbol{u}|=2$ and $|\boldsymbol{v}|=3$ then what is $|u \bullet v|$?
© Let \boldsymbol{u} be an arbitrary string in Σ^{*}. What is $\epsilon \boldsymbol{u}$? What is $u \in$?
(© Is $u v=v u$ for every $u, v \in \Sigma^{*}$?
(0) Is $(u v) w=u(v w)$ for every $u, v, w \in \Sigma^{*}$?

Exercise

Answer the following questions taking $\Sigma=\{0,1\}$.
(1) What is Σ^{0} ?
(2) How many elements are there in Σ^{3} ?
(3) How many elements are there in \sum^{n} ?
(4) What is the length of the longest string in Σ ?
(5) Does Σ^{*} have strings of infinite length?
(0) If $|u|=2$ and $|v|=3$ then what is $|u \cdot v|$?
((et u be an arbitrary string in Σ^{*}. What is $\epsilon \boldsymbol{u}$? What is $u \epsilon$?
(3) Is $u v=v u$ for every $u, v \in \Sigma^{*}$?
© Is (uv)w=u(vw) for every $u, v, w \in \Sigma^{*}$?

Exercise

Answer the following questions taking $\Sigma=\{0,1\}$.
(1) What is Σ^{0} ?
(2) How many elements are there in Σ^{3} ?
(3) How many elements are there in \sum^{n} ?
(4) What is the length of the longest string in Σ ?
(5) Does Σ^{*} have strings of infinite length?
(0) If $|\boldsymbol{u}|=2$ and $|\boldsymbol{v}|=3$ then what is $|\boldsymbol{u} \bullet \boldsymbol{v}|$?
(1) Let u be an arbitrary string in Σ^{*}. What is ϵu ? What is $u \in$?
(3) Is $u v=v u$ for every $u, v \in \Sigma^{*}$?
(0) Is $(u v) w=u(v w)$ for every $u, v, w \in \sum^{*}$?

Exercise

Answer the following questions taking $\Sigma=\{0,1\}$.
(1) What is Σ^{0} ?
(2) How many elements are there in Σ^{3} ?
(3) How many elements are there in \sum^{n} ?
(4) What is the length of the longest string in Σ ?
(5) Does Σ^{*} have strings of infinite length?
(0) If $|\boldsymbol{u}|=2$ and $|\boldsymbol{v}|=3$ then what is $|\boldsymbol{u} \bullet \boldsymbol{v}|$?
(7) Let \boldsymbol{u} be an arbitrary string in Σ^{*}. What is $\boldsymbol{\epsilon} \boldsymbol{u}$? What is $\boldsymbol{u} \boldsymbol{\epsilon}$?
(3) Is $u v=v u$ for every $u, v \in \Sigma^{*}$?
(9) Is $(u v) w=u(v w)$ for every $u, v, w \in \Sigma^{*}$?

Exercise

Answer the following questions taking $\Sigma=\{0,1\}$.
(1) What is Σ^{0} ?
(2) How many elements are there in Σ^{3} ?
(3) How many elements are there in \sum^{n} ?
(4) What is the length of the longest string in Σ ?
(5) Does Σ^{*} have strings of infinite length?
(6) If $|\boldsymbol{u}|=2$ and $|\boldsymbol{v}|=3$ then what is $|\boldsymbol{u} \bullet \boldsymbol{v}|$?
(3) Let \boldsymbol{u} be an arbitrary string in Σ^{*}. What is $\boldsymbol{\epsilon} \boldsymbol{u}$? What is $\boldsymbol{u} \boldsymbol{\epsilon}$?
(8) Is $u v=v u$ for every $u, v \in \Sigma^{*}$?
(3) Is (uv)w=u(vw) for every $u, v, w \in \Sigma^{*}$?

Exercise

Answer the following questions taking $\Sigma=\{0,1\}$.
(1) What is Σ^{0} ?
(2) How many elements are there in Σ^{3} ?
(3) How many elements are there in \sum^{n} ?
(4) What is the length of the longest string in Σ ?
(5) Does Σ^{*} have strings of infinite length?
(6) If $|\boldsymbol{u}|=2$ and $|\boldsymbol{v}|=3$ then what is $|\boldsymbol{u} \bullet \boldsymbol{v}|$?
(3) Let \boldsymbol{u} be an arbitrary string in Σ^{*}. What is $\boldsymbol{\epsilon} \boldsymbol{u}$? What is $\boldsymbol{u} \boldsymbol{\epsilon}$?
(8) Is $u \boldsymbol{v}=\boldsymbol{v u}$ for every $u, v \in \Sigma^{*}$?
(0) Is $(u v) \boldsymbol{w}=\boldsymbol{u}(\boldsymbol{v} \boldsymbol{w})$ for every $u, v, w \in \Sigma^{*}$?

THE END

(for now)

