“The eternal mystery of the world is its comprehensibility ...
... The fact that it is comprehensible is a miracle.”
– Albert Einstein
How to Zoom in the lectures

- Students’ Video and Audio will be both muted during the lecture unless permitted by the instructor for questions.

- You can use the chatbox to ask questions or write comments.

- Questions will be collected by the assistant for answers or summary.
Have you read the syllabus on the course website?

A. Yes. B. No.
Have you done the survey on the course Compass website?

A. Yes. B. No.
Have you watched the welcome video in the Orientation module?

A. Yes. B. No.
How many ways are there to watch a lecture video of CS361 Sp21?

A. 1.
B. 2.

C. 3.
D. None of the above.
Objectives

- Welcome/Orientation
- Big picture of the contents
- Lecture 1 - Data Visualization & Summary (I)
Vision (PCA)

- Passion for learning
- Compassion for each other
- Authentic understanding

vs. Rote Learning
How to succeed in this course?

- Factors that will hinder you from success
- Factors that will help you succeed
Avoid these that could cause failure

- Academic integrity infraction – by all means!
- Missing homeworks, project or quizzes
- Late/Poor homeworks or project
- Insufficient viewing of the contents
- Poor time management
- Course Calendar, Announcement
- Too many challenging classes at the same time
- Not motivated/not interested in the topic
Factors that will help you succeed

- Be engaged/motivated,
- Do not hesitate to ask for help.
- Be Active in class participation
- Do as much practice as possible, not just the homework and project.
- Read the textbook and other recommended books.
- Clear your doubts/misconceptions asap (every lecture/discussion is important)
Interactions are important!

- Try to go to office hours as much as possible
- Try to meet or talk to the instructor as least once personally
- You are encouraged to join the team work (extra points opportunities)
- Show compassion via community service
Graded Team work

* Act as graders to review HW that include errors

* Extra points to earn as a leader; or by solving extra problem
Extra Points

Office hour visits;
HW extra points;
Project extra points;
Group work in discussion;
Meeting with Prof. HonGye;
Learning Community Service;
Team work extra point.
Quizzes

* Pay attention to the Quiz windows (Calendar & reminders)
* A way to keep up with the course.
* Late Quiz has 20% deduction.
Course materials

🎯 Compass Course Site
Find it through Compass for CS361 Spring 2021 AL1

🎯 Public Website
 🌐 https://courses.grainger.illinois.edu/CS361/sp2021/
Lecture videos and ClassTranscribe

- Lecture and discussion will be recorded and accessible at https://mediaspace.illinois.edu/

- ClassTranscribe provides transcripts for these videos
 https://classtranscribe.illinois.edu/home

- The Zoom recording links and the specific links of the above two channels are all on Compass
Our Staff

Instructor: Hongye Liu

Teaching Assistants:
Weikai Xu (ADA & ADB),
Sneha Krishna Kumara (ADC & ADD),
Aditya Karan (ADE & ADF),
Yiren Wang (ADG & ADH).

Office hours are listed under Zoom Meetings.
Course Assistants: Ajay Fewell, Christina Hu, Chenhui Zhang, Lilac Lai, Matthew Chen, Shirley Mao, and Vishesh Gupta.
What does this course teach?

Why are there 4 sections? How are they related?
This field really started with gaming

🌟 We are familiar with flipping a coin or throwing a dice, the result is uncertain!

Head
Or Tail?

Which side is front?
Life is uncertain so aim for long-term average

* We repeat a lot of experiments and see if there is regularity
Throwing a lot of “coins” for many times in one touch

Galton board, the Bead Machine

https://www.youtube.com/watch?v=Kq7e6cj2nDw
Break out
Simulation of random draw of a picture on computer

🌟 It’s the same as throwing a 4-sided die.
What does this course teach?

- Describing Datasets [ch. 1-2]
- Summary & visualization
- Probability [ch. 3-5]
- Inference – Statistical Inference [ch. 6-7, 9]
- Tools – Machine Learning tools [ch. 10-14]
Describing datasets (Summary & visualization)

Descriptive & Graphical

Figure 2-4. Monthly normal mean temperatures for four locations in the US. Data source: NOAA.

Summarization of 4 locations’ annual mean temperature by month.
Romeo and Juliet have a date

Each arrives with a delay btw 0 and 1 hour. The first to arrive leaves after 1/4 hour. All pairs of delays are equally likely.

What's the probability that they will meet?
Mathematical

How many slots are empty on average for a simple hashing table?

\[
\frac{1}{3}
\]
Inference

Analytical

How different are they?

J Fromonot et al. JACC 2016
Tools (Machine learning)

Algorithmical

High-dimensional or complex shaped data sets need tools! Humans are limited in 2-3D. Machine learning is highly desired! Often depends on Statistics.
Why these 4 sections?

- Summary & visualization
 Graphical
- Probability
 Mathematical
- Inference – Statistical Inference
 Analytical
- Tools – Machine Learning tools
 Algorithmical
Why these 4 sections?

- The common thread is **Data**.
- We are doing computer science and so are like these yellow fish

Data Science + Comp. Science
Statistics
Mathematics
What is special of Data? For Data?

World.

Context
Why these 4 sections?

- Real world data is often high dimensional and complex.
- These 4 parts of knowledge or techniques are inseparably/organically connected in many real world applications.
Why these 4 sections?

- Summary & visualization
- Graphical Probability
- Mathematical Inference – Statistical Inference
- Analytical Tools – Machine Learning tools

Data Visualization
Modeling Data
X random variable
Draw conclusion from Data
Dealing with high-dim Data
What do we emphasize?

- Mathematical principle
- Critical thinking
- Working with real world data

Authentic understanding
- meaningful learning
Q. What do you feel about it when we speak of data visualization?
Example 1: Black hole

constructed image using data collected from many different telescopes’ view of the same object

This project received a 3 million-dollar award

Credit: NASA
Example 2: Four seasons by Vivaldi

Pitch is shown by the distance from center; **Length** of the note is the size of dot; **Instrument** is shown by the color.

https://medium.com/future-today/off-the-staff-an-experiment-in-visualizing-notes-from-music-scores-58f6ee9f0cef
Example 3: Word cloud

Frequency of words of a document in novel visual presentation
Example 4: GIS map

Color scaled dots show the lead level in water in an area in Michigan.
Datasets \(\{x\} \) – a set of \(N \) items \(x_i \), \(i=1...N \), each of which is a tuple.
Lecture I: Data Visualization & Summary

- Convention: columns are the *features*; the number of features is *dimension*.

Each row is a tuple with dimension = 5
Data types

- Categorical: Discrete, Smoke, Not smoke
- Ordinal: Discrete, Happy, Very Happy, Extremely Happy
- Continuous: Temp, Weight
Data types

- Categorical
 Smoker or non-Smoker, Female or Male etc.

- Ordinal
 Not satisfied, satisfied, very satisfied

- Continuous (any real number within a range)
 Temperature
Q. Which of the following data is not categorical?

A. Number of enrolled students in a class
B. Weight of apples in a grocery store
C. Instruments played by an orchestra
D. Type of chemical reagents in a lab
E. A & B
Simple Visualization of Data

- General principles
- Bar chart
- Histogram
- Conditional histogram
Simple Visualization of Data

Tables

In Python or R, there is table format and there is data.frame which is a very versatile table for storing all kinds of data type.
General principles

Must not mislead or distort;
Aesthetically pleasing;
Clear, Attractive, Convincing;
Show message/significance.
Simple Visualization of Data

🌟 Bar chart

A set of bars that are organized by categorical or ordinal feature

Data: “mtcars”
An example of good, ugly, bad, wrong

Dr. Wilke illustrated the difference between good, ugly, bad and wrong visualization

Figure 1-1. Examples of ugly, bad, and wrong

C. Wilke “Fundamentals of Data Visualization”
Q: Is this a good bar chart?

A. Yes
B. No
How about using a color scale

Q1 (by day)

How much do you expect this course to relate to your future career?

A set of bars that are organized by bins that contains numerical data (discrete or continuous)

Data: “iris”
Visualizing Data with Histogram (II)

Conditional histogram

Histogram generated by subsets of the data

Data: “iris”
Visualizing Data with Histogram (III)

Conditional histogram

Data: Combined Score (HWs, Prj and Exams) grouped by students with full participation or not full in CS361 fall 2019

Mean (aqua) = 890
Mean (red) = 760
Assignments

- Finish the orientation module on Compass
- Submit HW0 to Gradescope to test it
- Start week1 module on Compass
Additional References

- Charles M. Grinstead and J. Laurie Snell
 "Introduction to Probability"

- Morris H. Degroot and Mark J. Schervish
 "Probability and Statistics"
See you next time

See you!