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Last	time	

� Decision	tree	(II)	

� Random	forest	

� Support	Vector	Machine	(I)	



Objectives	

� Support	Vector	Machine	(II)	

� Naïve	Bayesian	Classifier	

* Hinge loss t Regularization
* convex function , Gradient Descent

Stochastic Gradient Descent

* Training A Validation



Motivation	for	Studying	Support	Vector	

Machine	

�  When	solving	a	classifica4on	problem,	it	is	good	to	
try	several	techniques.	

�  Criteria	to	consider	in	choosing	the	classifier	include	
�  Accuracy	
�  Training	speed	
�  Classifica4on	speed	
�  Performance	with	small	training	set	

�  Interpretability		

✔	

✔	

✔	

Stochastic Gradient Descent



SVM	problem	formulation	

�  At	first	we	assume	a	binary	classifica4on	problem	

�  The	training	set	consists	of	N	items	
�  Feature	vectors	xi	of	dimension	d	

�  Corresponding	class	labels		yi ∈ {±1}

�  We	can	picture	the	training	
data	as	a	d-dimensional	
sca^er	plot	with	colored	
labels	
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Decision	boundary	of	SVM	

�  SVM	uses	a	hyperplane	as	its	
decision	boundary	

�  The	decision	boundary	is:	

�  In	vector	nota4on,	the	
hyperplane	can	be	wri^en	as:	
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Classification	function	of	SVM	

�  SVM	assigns	a	class	label	to	a	
feature	vector	according	to	the	
following	rule:	

�  In	other	words,	the	classifica4on	
func4on	is:	
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�  Note	that		
�  If																						is	small,	then									was	close	to	the	decision	

boundary	

�  If																						is	large,	then									was	far	from	the	decision	
boundary		
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What	if	there	is	no	clean	cut	boundary?	

�  Some	boundaries	are	be^er	
than	others	for	the	training	data	

�  Some	boundaries	are	likely	more	
robust	for	run-4me	data	

�  We	need	to	a	quan4ta4ve	
measure	to	decide	about	the	
boundary	

�  The	loss	func0on	can	help	
decide	if	one	boundary	is	be^er	
than	others	

a
T
x+ b = 0

x
(1)

x
(2)



Loss	function	1	

�  For	any	given	feature	vector							with	class	label																		,	
we	want		
�  Zero	loss	if								is	classified	correctly	

�  Posi4ve	loss	if							is	misclassified	

�  If						is	misclassified,	more	loss	is	assigned	if	it’s	further	away	
from	the	boundary	

�  This	loss	func4on	1	meets	the	criteria	above:	

�  Training	error	cost	
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Q.	What’s	the	value	of	this	function		?	

A.		0.		
B.		others.	
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Q.	What’s	the	value	of	this	function		?	

A.		0.		
B.		A	value	greater		
than	or	equal	to	0.	
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Loss	function	1	

�  For	any	given	feature	vector							with	class	label																		,	
we	want		
�  Zero	loss	if								is	classified	correctly	

�  Posi4ve	loss	if							is	misclassified	

�  If						is	misclassified,	more	loss	is	assigned	if	it’s	further	away	
from	the	boundary	

�  This	loss	func4on	1	meets	the	criteria	above:	

�  Training	error	cost	
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The	problem	with	loss	function	1	

�  Loss	func4on1	does	not	dis4nguish	between	the	following	
decision	boundaries	if	they	both	classify						correctly.	
�  One	passes	the	two	classes	closely	

�  One	that	passes	with	a	wider	margin	

Credit:	Kelvin	Murphy		

xi

�  But	leaving	a	larger	margin	
gives	robustness	for	run-4me	
data-	the	large	margin	
principle	
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Loss	function	2:	the	hinge	loss	

�  We	want	to	impose	a	small	posi4ve	loss	if								is	correctly	
classified	but	close	to	the	boundary	

�  The	hinge	loss	func4on	meets	the	criteria	above:	

�  Training	error	cost	
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The	problem	with	loss	function	2	

�  Loss	func4on	2	favors	decision	boundaries	that	have	large								
because	increasing										can	zero	out	the	loss	for	a	correctly	
classified							near	the	boundary.	

	

�  But	large										makes	the	classifica4on	func4on														
extremely	sensi4ve	to	small	changes	in							and	make	it	less	
robust	to	run-4me	data.	

�  So	small										is	be^er.	
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Hinge	loss	with	regularization	penalty	

�  We	add	a	penalty	on	the	square	magnitude		

	

�  Training	error	cost	

�  The	regulariza0on	parameter					trade	off	between	these	two	
objec4ves	
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Q.	What	does	the	penalty	discourage?	

A.		Too	big	a	magnitude	of	the	
vector	a		
B.		Too	many	data	points	in	the	
training	set	
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How	to	compute	the	decision	boundary?	

minimize Loss function Sta, b )

( a-it bttj-argmincsca.bg)
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Convex	set	and	convex	function	

�  If	a	set	is	convex,	
any	line	connec4ng	
two	points	in	the	
set	is	completely	
included	in	the	set		

�  A	convex	func4on:	
the	area	above	the	
curve	is	convex		

Credit:	Dr.	Kelvin	Murphy	

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)
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Q.#Is#this#curve#a#convex#curve?#

A. YES&
B. NO&•

A-



Q.#Is#this#curve#a#convex#curve?#

A. YES&
B. NO&at .

A-



Q.	Is	this	surface	convex?	

A. YES	
B. NO	

Source:	wikipedia	
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Iterative	minimization	by	gradient	

descent		

�  For	a	func4on	such	as	

	

�  A	convex	surface	

Source:	wikipedia	
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Gradient	Descent	
a-=[a, az - - - ad ]T let 's omit b for now
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Stochastic	gradient	descent		

xk ∈ {xi}
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The	difference	btw	GD	and	SGD	
GD SGD
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Update	parameters	of	the	hyperplane	

during	the	stochastic	gradient	descent		

�  Since																																																																								and																										
We	have	the	following	upda4ng	equa4ons:	
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Training	procedure-minimizing	the	cost	

function	

�  The	training	error	cost																		is	a	func4on	of	decision	
boundary	parameters													,	so	it	can	help	us	find	the	best	
decision	boundary.		

�  Fix							and	set	some	ini4al	values	for	

�  Search	itera4vely	for		

�  Repeat	the	previous	steps	for	several	values	of						and	choose	
the	one	that	gives	the	decision	boundary	with	best	accuracy	on	
a	valida4on	data	set.	
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Validation/testing	of	SVM	model	

�  Split	the	labeled	data	into	training,	valida0on	and	test	sets.	

�  For	each	choice	of	λ,	run	stochas4c	gradient	descent	to	find	
the	best	decision	boundary	parameters	(a,	b)	using	the	
training	set.		

�  Choose	the	best	λ	based	on	accuracy	on	the	valida4on	set.	
	

�  Finally	evaluate	the	SVM’s	accuracy	on	the	test	set.		

�  This	process	avoids	overfiing	the	data.	



Extension	to	multiclass	classification	

�  All	vs.	all	
�  Train	a	separate	binary	classifier	for	each	pair	of	classes.		

�  To	classify,	run	all	classifiers	and	see	which	class	it	will	be	
labeled	most	with.		

�  Computa4onal	complexity	is	quadra4c	to	the	number	of	
classes.			

�  One	vs.	all	
�  Train	a	separate	binary	classifier	for	each	class	against	all	else.	

�  To	classify,	run	all	classifiers	and	see	which	label	gets	the	highest	
score	

�  Computa4onal	complexity	scales	linearly.	
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What	if	the	data	is	inseparable	linearly?	

�  There	is	a	chance	the	data	is	inseparable	

�  Use	the	non-linear	SVM	with	kernels!	

�  Decision	boundary	is	curved	



Naïve	Bayes	classifier	

�  Training	
�  Use	the	training	data																	to	es4mate	a	

probability	model			

�  Assume	that	the	features	of	{x}	are	condi4onally	
independent	given	the	class	label	y 

	

�  Classifica4on	
�  Assign	the	label																														to	a	feature	

vector	x		
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Additional	References	

✺  Robert	V.	Hogg,	Elliot	A.	Tanis	and	Dale	L.	
Zimmerman.	“Probability	and	Sta4s4cal	
Inference”		

�  Kelvin	Murphy,	“Machine	learning,	A	
Probabilis4c	perspec4ve”	



See	you	next	time	

See 
You! 


