

Principal Component Analysis --Exploring the data in less
dimensions

Credit: wikipedia

Last time

- ** Review of Bayesian inference
- ** Visualizing high dimensional data & Summarizing data
- ****** The covariance matrix

Objectives

- ** Principal Component Analysis
- **Examples of PCA**

Diagonalization of a symmetric matrix

- If A is an n×n symmetric square matrix, the eigenvalues are real.
- If the eigenvalues are also distinct, their eigenvectors are orthogonal
- ** We can then scale the eigenvectors to unit length, and place them into an orthogonal matrix $U = [\mathbf{u}_1 \ \mathbf{u}_2 \ \ \mathbf{u}_n]$
- ** We can write the diagonal matrix $\Lambda = U^T A U$ such that the diagonal entries of Λ are $\lambda_1, \lambda_2 ... \lambda_n$ in that order.

Diagonalization example

₩ For

$$A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$

Covariance for a pair of components in a data set

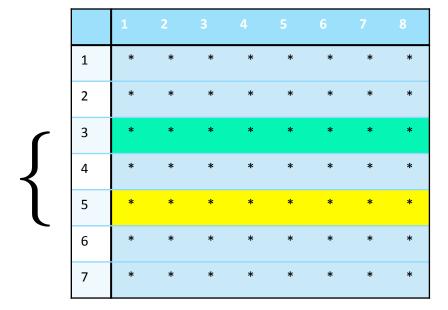
For the jth and kth components of a data set
{x}

$$cov(\{x\}; j, k) = \frac{\sum_{i} (x_i^{(j)} - mean(\{x^{(j)}\}))(x_i^{(k)} - mean(\{x^{(k)}\}))^T}{N}$$

Covariance matrix

Data set $\left\{ \mathbf{X} \right\}$ 7×8

$$cov(\{\mathbf{x}\}; 3, 5)$$



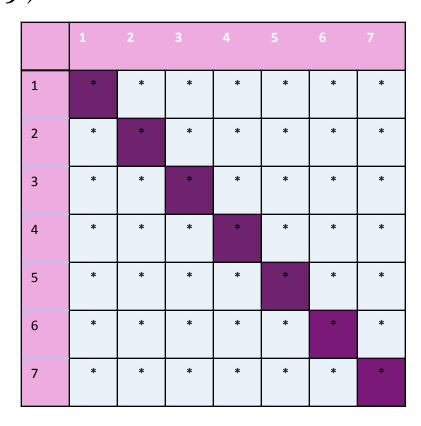
Covmat($\{\mathbf{x}\}$) 7×7

	1	2	3	4	5	6	7
1	*	*	*	*	*	*	*
2	*	*	*	*	*	*	*
3	*	*	*	*	*	*	*
4	*	*	*	*	*	*	*
5	*	*	*	*	*	*	*
6	*	*	*	*	*	*	*
7	*	*	*	*	*	*	*

Properties of Covariance matrix

$$cov(\{x\}; j, j) = var(\{x^{(j)}\})$$
 Covmat($\{\mathbf{X}\}$) 7×7

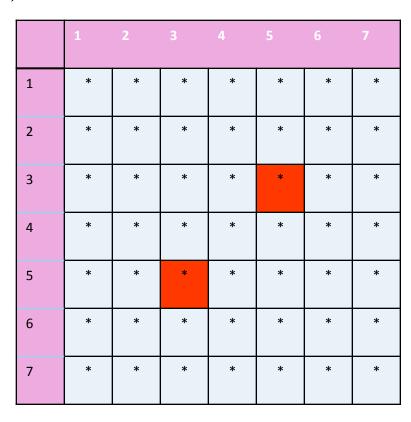
- The diagonal elements of the covariance matrix are just variances of each jth components
- ** The off diagonals are covariance between different components



Properties of Covariance matrix

$$cov(\lbrace x \rbrace; j, k) = cov(\lbrace x \rbrace; k, j)$$
 Covmat($\lbrace \mathbf{X} \rbrace$) 7×7

- ** The covariance matrix is symmetric!
- ** And it's **positive** semi-definite, that is all $\lambda_i \ge 0$
- Covariance matrix is diagonalizable



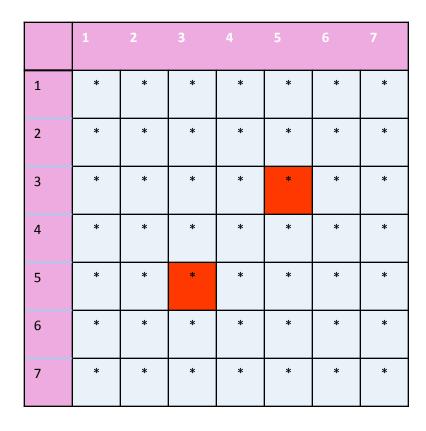
Properties of Covariance matrix

If we define X_c as the
mean centered
matrix for dataset {x}

$$Covmat(\{x\}) = \frac{X_c X_c^T}{N}$$

** The covariance matrix is a d×d matrix

Covmat($\{\mathbf{x}\}$) 7×7



Example: covariance matrix of a data set

(1)

$$A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix} \begin{array}{c} \mathbf{x^{(1)}} & \text{covariance matrix of this data?} \\ \mathbf{x^{(2)}} & \\ \mathbf{x^$$

What are the dimensions of the

- A) 2 by 2
- B) 5 by 5
- C) 5 by 2
- D) 2 by 5

Example: covariance matrix of a data set

$$A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}$$

$$A_1 = \begin{vmatrix} 2 & 1 & 0 & -1 & -2 \\ -1 & 1 & 0 & 1 & -1 \end{vmatrix}$$

(II)
$$A_2 = A_1 A_1^T$$

Inner product of each pairs:

$$A_2[1,1] = 10$$

$$A_2[2,2] = 4$$

$$A_2[1,2] = 0$$

(111)

Divide the matrix with N – the number of data poits

Covmat(
$$\{\mathbf{x}\}$$
) = $\frac{1}{N}A_2 = \frac{1}{5}\begin{bmatrix} 10 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0.8 \end{bmatrix}$

What do the data look like when Covmat({x}) is diagonal?

What is the correlation between the 2 components for the data m?

$$Covmat(\mathbf{m}) = \begin{bmatrix} 20 & 25 \\ 25 & 40 \end{bmatrix}$$

Q. Is this true?

Transforming a matrix with orthonormal matrix only rotates the data

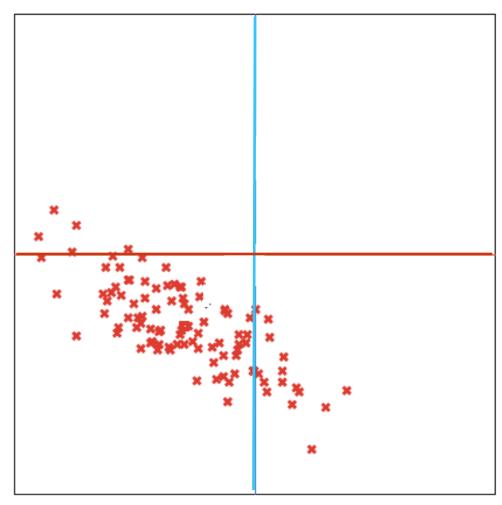
A. Yes

B. No

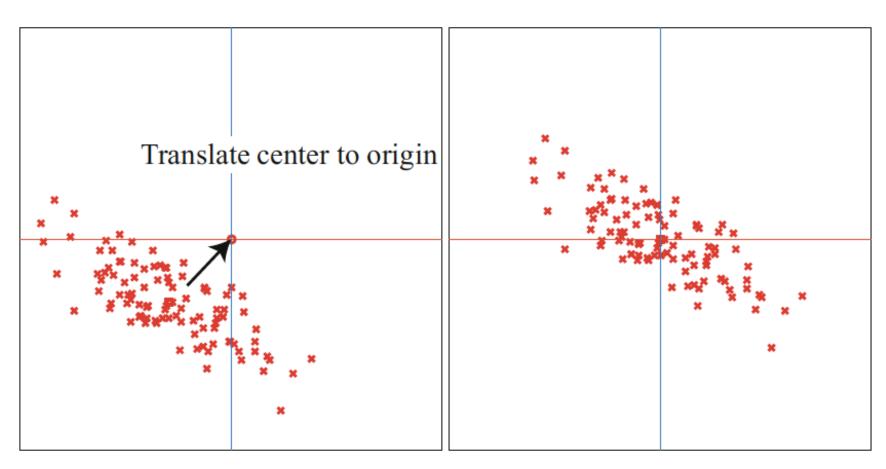
Dimension Reduction

- In stead of showing more dimensions through visualization, it's a good idea to do dimension reduction in order to see the major features of the data set.
- ** For example, principal component analysis help find the major components of the data set.
- ** PCA is essentially about finding eigenvectors of the covariance matrix of the data set {x}

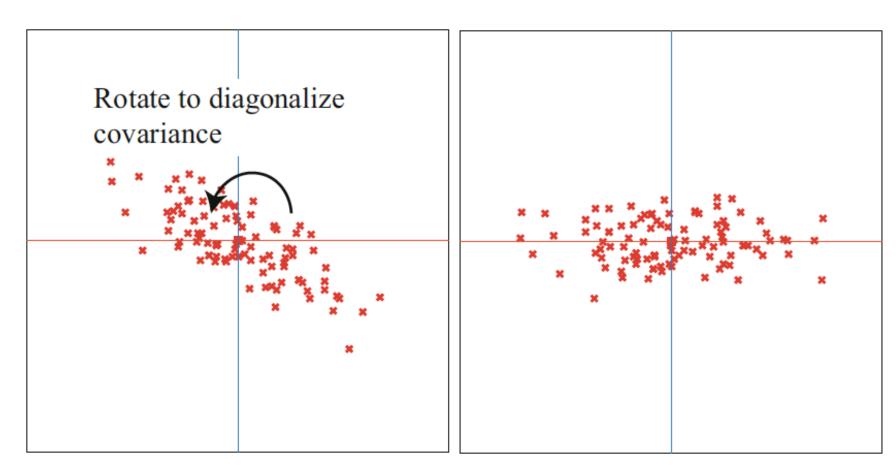
Dimension reduction from 2D to 1D



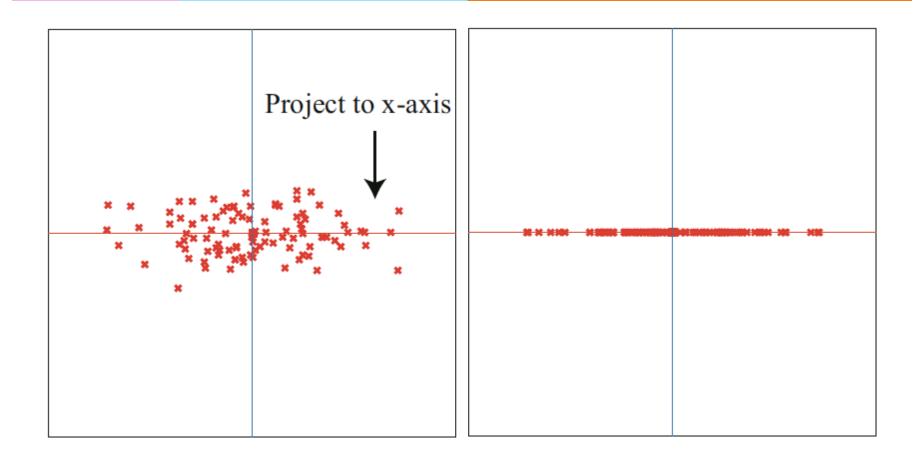
Step 1: subtract the mean



Step 2: Rotate to diagonalize the covariance



Step 3: Drop component(s)



Principal Components

The columns of U are the normalized eigenvectors of the Covmat({x}) and are called the principal components of the data {x}

Principal components analysis

- ** We reduce the dimensionality of dataset $\{x\}$ represented by matrix $D_{d\times n}$ from d to s (s < d).
- ** Step 1. define matrix $oldsymbol{m}_{d imes n}$ such that $oldsymbol{m} = oldsymbol{D} mean(oldsymbol{D})$
- st Step 2. define matrix $oldsymbol{r}_{d imes n}$ such that $oldsymbol{r}_i = oldsymbol{U}^Toldsymbol{m}_i$

Where ${m U}^T$ satisfies ${m \Lambda} = {m U}^T \ Covmat(\{{m x}\}) {m U}$, ${m \Lambda}$ is the diagonalization of $Covmat(\{{m x}\})$ with the eigenvalues sorted in decreasing order, ${m U}$ is the orthonormal eigenvectors' matrix

** Step 3. Define matrix $m{p}_{d imes n}$ such that $m{p}$ is $m{r}$ with the last d-s components of $m{r}$ made zero.

What happened to the mean?

Step 1.

$$mean(\boldsymbol{m}) = mean(\boldsymbol{D} - mean(\boldsymbol{D})) = 0$$

Step 2.

$$mean(\mathbf{r}) = \mathbf{U}^T mean(\mathbf{m}) = \mathbf{U}^T 0 = 0$$

$$mean(\mathbf{p_i}) = mean(\mathbf{r_i}) = 0 \text{ while } i \in 1:s$$

$$mean(\mathbf{p_i}) = 0 \text{ while } i \in s+1:d$$

What happened to the covariances?

Step 1.

$$Covmat(\boldsymbol{m}) = Covmat(\boldsymbol{D}) = Covmat(\{\boldsymbol{x}\})$$

Step 2.

$$Covmat(oldsymbol{r}) = oldsymbol{U}^T Covmat(oldsymbol{m}) oldsymbol{U} = oldsymbol{\Lambda}$$

** Step 3. $Covmat(\boldsymbol{p})$ is $\boldsymbol{\Lambda}$ with the last/smallest d-s diagonal terms turned to 0.

Sample covariance matrix

In many statistical programs, the sample covariance matrix is defined to be

$$Covmat(\boldsymbol{m}) = \frac{\boldsymbol{m} \ \boldsymbol{m}^T}{N-1}$$

Similar to what happens to the unbiased standard deviation

$$D = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix} \Rightarrow mean(\mathbf{D}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\mathbf{m} = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix}$$

Step 2.

Step 3.

$$D = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix} \Rightarrow mean(\mathbf{D}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\mathbf{m} = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix}$$

Step 2.

$$Covmat(\boldsymbol{m}) = \begin{bmatrix} 20 & 25 \\ 25 & 40 \end{bmatrix} \Rightarrow \lambda_1 \simeq 57; \quad \lambda_2 \simeq 3$$

$$\Rightarrow \mathbf{U} = \begin{bmatrix} 0.5606288 & -0.8280672 \\ 0.8280672 & 0.5606288 \end{bmatrix} \qquad \mathbf{U}^{\mathbf{T}} = \begin{bmatrix} 0.5606288 & 0.8280672 \\ -0.8280672 & 0.5606288 \end{bmatrix}$$

Step 3.

Step 1.

$$D = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix} \Rightarrow mean(\mathbf{D}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\mathbf{m} = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix}$$

Step 2.

$$Covmat(\boldsymbol{m}) = \begin{bmatrix} 20 & 25 \\ 25 & 40 \end{bmatrix} \Rightarrow \lambda_1 \simeq 57; \quad \lambda_2 \simeq 3$$

$$\Rightarrow \boldsymbol{U} = \begin{bmatrix} 0.5606288 & -0.8280672 \\ 0.8280672 & 0.5606288 \end{bmatrix} \qquad \boldsymbol{U^T} = \begin{bmatrix} 0.5606288 & 0.8280672 \\ -0.8280672 & 0.5606288 \end{bmatrix}$$

$$\Rightarrow \mathbf{r} = \mathbf{U}^T \mathbf{m} = \begin{bmatrix} 7.478 & -7.211 & 10.549 & -0.267 & -3.071 & -7.478 \\ 1.440 & -0.052 & -1.311 & -1.389 & 2.752 & -1.440 \end{bmatrix}$$

Step 3.

$$D = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix} \Rightarrow mean(\mathbf{D}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\mathbf{m} = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix}$$

Step 2.

$$Covmat(\boldsymbol{m}) = \begin{bmatrix} 20 & 25 \\ 25 & 40 \end{bmatrix} \Rightarrow \lambda_1 \simeq 57; \quad \lambda_2 \simeq 3$$

$$\Rightarrow \mathbf{U} = \begin{bmatrix} 0.5606288 & -0.8280672 \\ 0.8280672 & 0.5606288 \end{bmatrix} \qquad \mathbf{U}^{\mathbf{T}} = \begin{bmatrix} 0.5606288 & 0.8280672 \\ -0.8280672 & 0.5606288 \end{bmatrix}$$

$$\Rightarrow \mathbf{r} = \mathbf{U}^T \mathbf{m} = \begin{bmatrix} 7.478 & -7.211 & 10.549 & -0.267 & -3.071 & -7.478 \\ 1.440 & -0.052 & -1.311 & -1.389 & 2.752 & -1.440 \end{bmatrix}$$

Step 3.
$$\Rightarrow p = \begin{bmatrix} 7.478 & -7.211 & 10.549 & -0.267 & -3.071 & -7.478 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

What is this matrix for the previous example?

$$\boldsymbol{U}^T Covmat(\boldsymbol{m})\boldsymbol{U} = ?$$

What is this matrix for the previous example?

$$U^TCovmat(m)U = ?$$

$$\left[
\begin{bmatrix}
57 & 0 \\
0 & 3
\end{bmatrix}
\right]$$

$$\frac{1}{N-1} \sum_{i} \|r_i - p_i\|^2 = \frac{1}{N-1} \sum_{i} \sum_{j=s+1}^{d} (r_i^{(j)})^2$$

$$\frac{1}{N-1} \sum_{i} \|r_i - p_i\|^2 = \frac{1}{N-1} \sum_{i} \sum_{j=s+1}^{d} (r_i^{(j)})^2 = \sum_{j=s+1}^{d} \sum_{i} \frac{1}{N-1} (r_i^{(j)})^2$$

$$\frac{1}{N-1} \sum_{i} ||r_{i} - p_{i}||^{2} = \frac{1}{N-1} \sum_{i} \sum_{j=s+1}^{d} (r_{i}^{(j)})^{2} = \sum_{j=s+1}^{d} \sum_{i} \frac{1}{N-1} (r_{i}^{(j)})^{2}$$
$$= \sum_{j=s+1}^{d} var(r_{i}^{(j)})$$

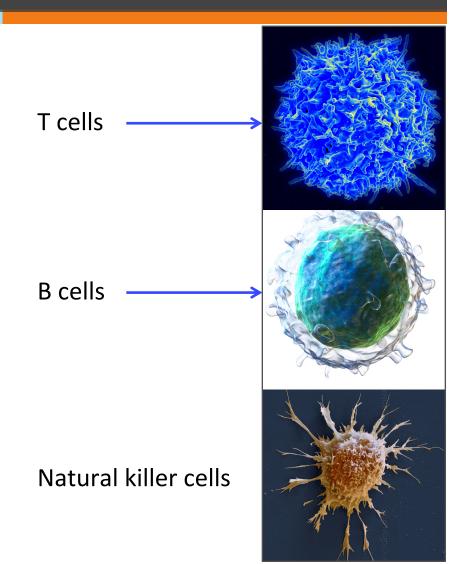
$$\frac{1}{N-1} \sum_{i} ||r_{i} - p_{i}||^{2} = \frac{1}{N-1} \sum_{i} \sum_{j=s+1}^{d} (r_{i}^{(j)})^{2} = \sum_{j=s+1}^{d} \sum_{i} \frac{1}{N-1} (r_{i}^{(j)})^{2}$$

$$= \sum_{j=s+1}^{d} var(r_{i}^{(j)})$$

$$= \sum_{j=s+1}^{d} \lambda_{j}$$

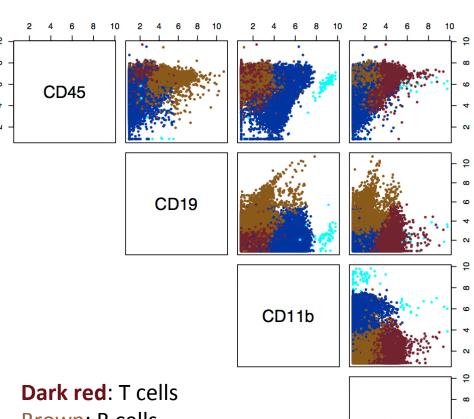
Examples: Immune Cell Data

- ** There are 38816 white blood immune cells from a mouse sample
- Each immune cell has40+ features/components
- Four features are used as illustration.
- * There are at least 3 cell types involved



Scatter matrix of Immune Cells

- There are 38816 white blood immune cells from a mouse sample
- Each immune cell has 40+ features/ components
- Four features are used for the illustration.
- There are at least 3 cell types involved



CD3e

Brown: B cells

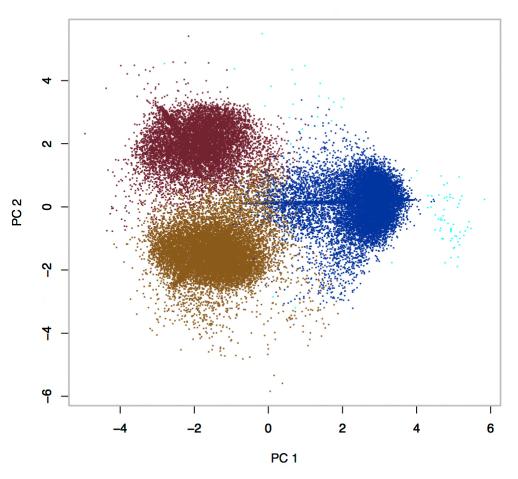
Blue: NK cells

Cyan: other small population

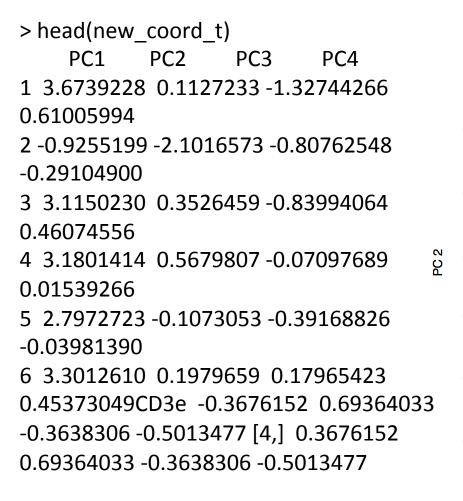
PCA of Immune Cells

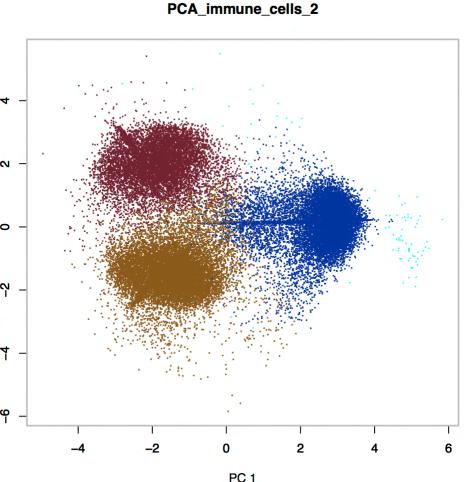
> res1 \$values Eigenvalues [1] 4.7642829 2.1486896 1.3730662 0.4968255 Eigenvectors **Svectors** [,1][,2] [,3] [,4] [1,] 0.2476698 0.00801294 -0.6822740 0.6878210 [2,] 0.3389872 -0.72010997 -0.3691532 -0.4798492 [3,] -0.8298232 0.01550840 -0.5156117 -0.2128324 [4,] 0.3676152 0.69364033 -0.3638306 -0.5013477

PCA_immune_cells_2



New coordinates in PCA





What is the percentage of variance that PC1 covers?

Given the eigenvalues: 4.7642829 2.1486896 1.3730662 0.4968255, what is the percentage that PC1 covers?

- A. 54%
- B. 16%
- C. 25%

Reconstructing the data

** Given the projected data $oldsymbol{p}_{d imes n}$ and mean({x}), we can approximately reconstruct the original data

$$\widehat{\boldsymbol{D}} = \boldsymbol{U}\boldsymbol{p} + mean(\{\boldsymbol{x}\})$$

- ** Each reconstructed data item $\widehat{m{D}_i}$ is a linear combination of the columns of $m{U}$ weighted by $m{p}_i$
- The columns of *U* are the normalized eigenvectors of the Covmat({x}) and are called the principal components of the data {x}

End-to-end mean square error

- ** Each $oldsymbol{x}_i$ becomes $oldsymbol{r}_i$ by translation and rotation
- ** Each $oldsymbol{p}_i$ becomes $\widehat{oldsymbol{x}}_i$ by the opposite rotation and translation
- * Therefore the end to end mean square error is:

$$\frac{1}{N-1} \sum_{i} \|\widehat{\boldsymbol{x}}_{i} - \boldsymbol{x}_{i}\|^{2} = \frac{1}{N-1} \sum_{i} \|\boldsymbol{r}_{i} - \boldsymbol{p}_{i}\|^{2} = \sum_{j=s+1}^{d} \lambda_{j}$$

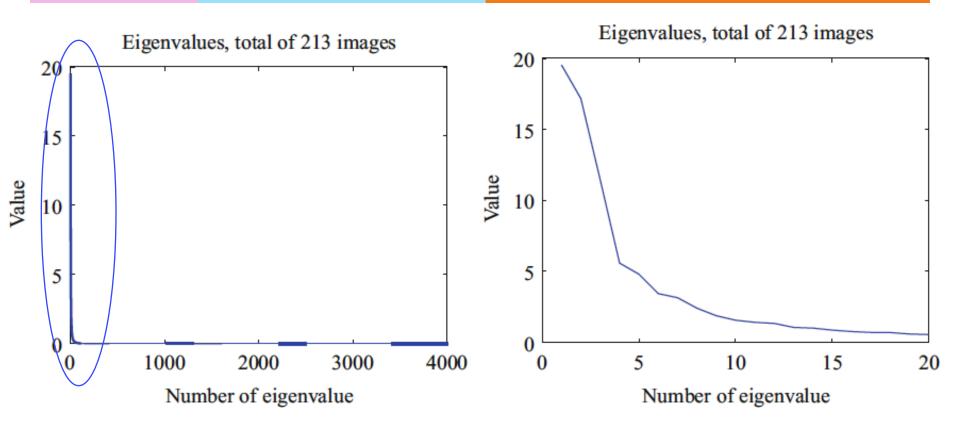
** $\lambda_{s+1},...,\lambda_d$ are the smallest d-s eigenvalues of the Covmat({x})

PCA: Human face data

- * The dataset consists of 213 images
- **Each image is grayscale and has 64 by 64 resolution**
- We can treat each image as a vector with dimension d = 4096

Credit: Prof. Forsyth

How quickly the eigenvalues decrease?



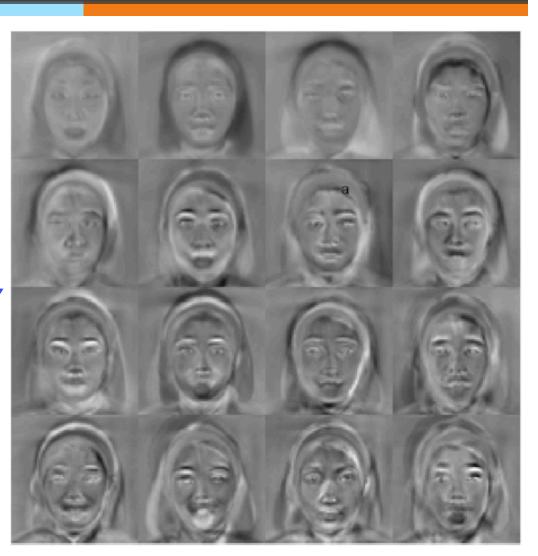
Credit: Prof. Forsyth

What do the principal components of the images look like?

Mean image

The first 16 principal components arranged into images

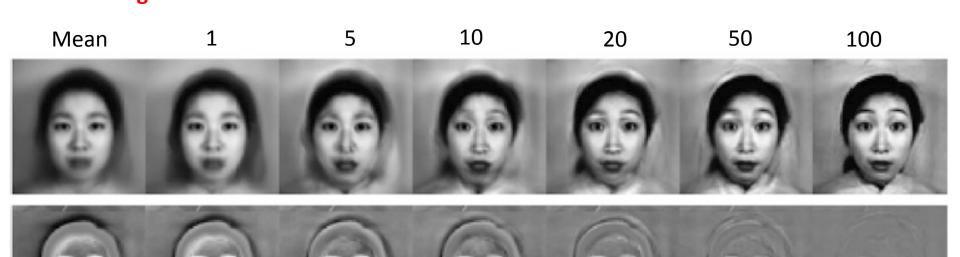
Credit: Prof. Forsyth



Reconstruction of the image

1st row show the reconstructions using some number of principal components 2nd row show the corresponding errors

Credit: Prof. Forsyth



Q. Which are true?

- A . PCA allows us to project data to the direction along which the data has the biggest variance
- B. PCA allows us to compress data
- C. PCA uses linear transformation to show patterns of data
- D. PCA allows us to visualize data in lower dimensions
- E. All of the above

Additional References

- ** Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- ** Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

