“In statistics we apply probability to draw conclusions from data.”

---Prof. J. Orloff

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 3.16.2021
Last time

- Sample mean
- Confidence interval
- t-distribution (I)
Objectives

- Review Sample mean, CI
- t-distribution (II)
- Bootstrap simulation
1) Why is **sample mean** a random variable?

ans: **No.**

2) Is $E[X^{(N)}] = \text{mean}\{x\}$? \(\downarrow\) \(\{x\}\) is some realized data of size \(N\), drawn from the population \(\{X\}\) with replacement.

3) What is the distribution of $X^{(N)}$?

4) What are $E[X^{(N)}]$, $\text{var}[X^{(N)}]$?

$= \text{popmean}$

$= \frac{\text{popvar}}{N}$
About the distribution of $X^{(N)}$

If $N \to \infty$, $X^{(N)} \sim \text{Normal}(\mu, \sigma)$

\[
\mu = \mathbb{E}[X^{(N)}] = \text{pop mean} \\
\sigma = \text{std}[X^{(N)}] = \frac{\text{pop std}}{\sqrt{N}}
\]

If $X^{(n)}$ is from a Normal like population,

\[T = \frac{\text{mean}\{x\} - \text{pop mean}}{\text{stderr}\{x\}} \sim t \text{ distribution with DOF } N-1\]

\[X^{(n)} = \text{mean}\{x\}\]

iid $X^{(n)}$
A tale of two statisticians

\{X\} = \{1, 2, 3, \ldots, 12\} \quad N_p = 12

The task: use only a subset of \{X\}: \{x\} with \(N=5\) to estimate the popmean(\{X\}) with some confidence report.
A tale of two statisticians

\[\{ X \} = \{ 1, 2, 3, \ldots, 12 \} \quad N_p = 12 \]

\[\{ X^b \} = \{ 1, 4, 5, 7, 11 \} \]
\[\{ X^b_1 \} = \{ 1, 1, 4, 5, 7 \} \]
\[\{ X^b_2 \} = \{ 4, 5, 7, 7, 13 \} \]
\[\{ X^b_n \} = \{ 5, 5, 5, 5, 5 \} \]

\[\text{if } N \to \infty \]
\[X^{(N)} \sim N(\mu, \sigma) \]
\[\mu = E[X^{(N)}] = \text{mean}\{x\} \]
\[\sigma = \text{stddev}\{x^{(N)}\} \]

Histogram of \(X^{(N)} \)

mean(\(X^{(b)} \)) = 18/5
Motivation of sampling: the poll example

This senate election poll tells us:
- The sample has 1211 likely voters
- Ms. Hyde-Smith has realized sample mean equal to 51%

What is the estimate of the percentage of votes for Hyde-Smith?

How confident is that estimate?
Expected value of one random sample is the population mean

🌟 Since each sample is drawn uniformly from the population

\[E[X^{(1)}] = \text{popmean}(\{X\}) \]

therefore

\[E[X^{(N)}] = \text{popmean}(\{X\}) \]

🌟 We say that \(X^{(N)} \) is an unbiased estimator of the population mean.

\[E[X^{(N)}] \approx \text{mean}(\{x_i\}) \]
Standard deviation of the sample mean

- We can also rewrite another result from the lecture on the weak law of large numbers

\[\text{var}[X^{(N)}] = \frac{\text{popvar}\{X\}}{N} \]

- The standard deviation of the sample mean

\[\text{std}[X^{(N)}] = \frac{\text{popsd}\{X\}}{\sqrt{N}} \]

- But we need the population standard deviation in order to calculate the \(\text{std}[X^{(N)}] \)!
Unbiased estimate of population standard deviation & Stderr

The unbiased estimate of $\text{popsd}(\{X\})$ is defined as

$$\text{stdunbiased}(\{x\}) = \sqrt{\frac{1}{N - 1} \sum_{x_i \in \text{sample}} (x_i - \text{mean}(\{x_i\}))^2}$$

So the **standard error** is an estimate of

$$\text{std}[X^{(N)}] = \frac{\text{popsd}(\{X\})}{\sqrt{N}} \approx \text{stderr}(\{x\})$$

$$\frac{\text{popsd}(\{X\})}{\sqrt{N}} = \frac{\text{stdunbiased}(\{x\})}{\sqrt{N}} = \text{stderr}(\{x\})$$
Standard error: election poll

What is the estimate of the percentage of votes for Hyde-Smith? 51%

Number of sampled voters who selected Ms. Smith is: 1211(0.51) ≈ 618

Number of sampled voters who didn’t select Ms. Smith was 1211(0.49) ≈ 593
Standard error: election poll

\(\text{stdunbiased}(\{x\}) \)

\[
= \sqrt{\frac{1}{1211 - 1} \left(618(1 - 0.51)^2 + 593(0 - 0.51)^2 \right) } = 0.5001001
\]

\(\text{stderr}(\{x\}) \)

\[
\approx \frac{0.5}{\sqrt{1211}} \approx 0.0144
\]

\[
= \frac{\text{stdunbiased}(\{x\})}{\sqrt{N}} \quad N = 1211
\]
Interpreting the standard error

- **Sample mean** is a random variable and has its own probability distribution, stderr is an estimate of sample mean’s standard deviation.

- When \(N \) is very large, according to the **Central Limit Theorem**, sample mean is approaching a normal distribution with

\[
\mu = \text{popmean}\left(\{X\}\right) ; \quad \sigma \approx \frac{\text{popsd}\left(\{X\}\right)}{\sqrt{N}} \approx \frac{\text{stderr}\left(\{x\}\right)}{\sqrt{N}}
\]

\[
\text{stderr}\left(\{x\}\right) = \frac{\text{stdunbiased}\left(\{x\}\right)}{\sqrt{N}}
\]
Interpreting the standard error

Probability distribution of sample mean tends normal when N is large

99.7% of the data are within 3 standard deviations of the mean
95% within 2 standard deviations
68% within 1 standard deviation

Credit: wikipedia

Population mean

μ + Standard error
Confidence intervals

Confidence interval for a population mean is defined by fraction

Given a percentage, find how many units of stderr it covers.

For 95% of the realized sample means, the population mean lies in [sample mean - 2 stderr, sample mean + 2 stderr]

\[\frac{\text{sample mean} - 2 \times \text{stderr}}{\text{sample mean} + 2 \times \text{stderr}} \]
Confidence intervals when N is large

- For about 68% of realized sample means
 \[\text{mean}\{x\} - \text{stderr}\{x\} \leq \text{popmean}\{X\} \leq \text{mean}\{x\} + \text{stderr}\{x\} \]

- For about 95% of realized sample means
 \[\text{mean}\{x\} - 2\text{stderr}\{x\} \leq \text{popmean}\{X\} \leq \text{mean}\{x\} + 2\text{stderr}\{x\} \]

- For about 99.7% of realized sample means
 \[\text{mean}\{x\} - 3\text{stderr}\{x\} \leq \text{popmean}\{X\} \leq \text{mean}\{x\} + 3\text{stderr}\{x\} \]
Q. Confidence intervals

What is the 68% confidence interval for a population mean?

A. [sample mean - 2*stderr, sample mean + 2*stderr]
B. [sample mean - stderr, sample mean + stderr]
C. [sample mean - std, sample mean + std]

[highlighted answer: B]
We estimate the population mean as 51% with stderr 1.44%.

The 95% confidence interval is

\[[51\%-2\times1.44\%, \ 51\%+2\times1.44\%] = [48.12\%, \ 53.88\%] \]
Q.

A store staff mixed their fuji and gala apples and they were individually wrapped, so they are indistinguishable. If I pick 30 apples and found 21 fuji, what is my 95% confidence interval to estimate the popmean is 70% for fuji? (hint: stderr > 0.05)

[A. [0.7-0.17, 0.7+0.17]
B. [0.7-0.056, 0.7+0.056]
What if N is small? When is N large enough?

If samples are taken from normal distributed population, the following variable is a random variable whose distribution is Student’s t-distribution with $N-1$ degree of freedom.

$$T = \frac{\text{mean}\{x\} - \text{popmean}\{X\}}{\text{stderr}\{x\}} \approx \frac{\text{mean}\{x\} - \text{popmean}}{\text{stderr}\{x\}}$$

Degree of freedom is $N-1$ due to this constraint:

$$\sum_{i}(x_i - \text{mean}\{x\}) = 0$$
t-distribution is a family of distributions with different degrees of freedom.

- t-distribution with $N=5$
- t-distribution with $N=30$

![Graph showing pdf of t-distribution](image)

Credit: wikipedia

William Sealy Gosset 1876-1937
When $N=30$, t-distribution is almost Normal

t-distribution looks very similar to normal when $N=30$.

So $N=30$ is a rule of thumb to decide N is large or not
Confidence intervals when \(N < 30 \)

- If the sample size \(N < 30 \), we should use t-distribution with its parameter (the degrees of freedom) set to \(N-1 \)

\[t\text{-distri. is also symmetric.} \]
Centered Confidence intervals

- Centered Confidence interval for a population mean by \(\alpha \) value, where

\[
P(T \geq b) = \alpha
\]

\[
P\left(\frac{\text{mean} \times \frac{1-p}{s\text{tdm}}} {\text{stderr}} \geq b\right) = \alpha
\]

For \(1-2\alpha \) of the realized sample means, the population mean lies in

\([\text{sample mean} - b \times \text{stderr}, \text{sample mean} + b \times \text{stderr}]\)
2d Confidence Interval

\[
P\left(\frac{\text{mean}(\{x\}) - \text{popmean}}{\text{stderr}(\{x\})} \right) \geq b \]

\[= P\left(\text{popmean} \leq \text{mean}(\{x\}) + b \cdot \text{stderr}(\{x\}) \right)\]

\[
P\left(\frac{\text{mean}(\{x\}) - \text{popmean}}{\text{stderr}(\{x\})} \right) \leq -b \]

\[= P\left(\text{popmean} \geq \text{mean}(\{x\}) - b \cdot \text{stderr}(\{x\}) \right)\]

\[\alpha = 5\% \Rightarrow 1 - 2\alpha = 90\%\]
The 95% confidence interval for a population mean is equivalent to what $1-2\alpha$ interval?

A. $\alpha = 0.05$

B. $\alpha = 0.025$

C. $\alpha = 0.1$
Sample statistic

- A **statistic** is a function of a dataset
 - For example, the mean or median of a dataset is a statistic

- **Sample statistic**
 - Is a statistic of the data set that is formed by the realized sample
 - For example, the realized sample mean
Q. Is this a sample statistic?

The largest integer that is smaller than or equal to the mean of a sample

A. Yes
B. No.
Q. Is this a sample statistic?

The interquartile range of a sample

A. Yes

B. No.
Confidence intervals for other sample statistics

- **Sample statistic** such as *median* and others are also interesting for drawing conclusion about the population.

- It’s often difficult to derive the analytical expression in terms of stderr for the corresponding random variable.

- So we can use simulation...
Bootstrap is a method to construct confidence interval for *any* sample statistics using resampling of the sample data set.

Bootstrapping is essentially uniform random sampling with replacement on the sample of size N.
Bootstrap for confidence interval of other sample statistics

Credit: E S. Banjanovic and J. W. Osborne, 2016, PAREonline

Figure 1. Summary of Bootstrapping Process
The realized sample of student attendance
{12, 10, 9, 8, 10, 11, 12, 7, 5, 10}, \(N=10 \), median=10

Generate a random index uniformly from [1,10] that correspond to the 10 numbers in the sample, ie. if index=6, the bootstrap sample’s number will be 11.

Repeat the process 10 times to get one bootstrap sample

<table>
<thead>
<tr>
<th>Bootstrap replicate</th>
<th>Sample median</th>
</tr>
</thead>
<tbody>
<tr>
<td>{11, 11, 12, 10, 10, 10, 12, 10, 7, 10}</td>
<td>10</td>
</tr>
</tbody>
</table>
The realized sample of student attendance \{12,10,9,8,10,11,12,7,5,10\}, \(N=10\), median=10

<table>
<thead>
<tr>
<th>Bootstrap replicate</th>
<th>Sample median</th>
</tr>
</thead>
<tbody>
<tr>
<td>{11, 11, 12, 10, 10, 10, 12, 10, 7, 10}</td>
<td>10</td>
</tr>
<tr>
<td>{7, 10, 10, 10, 9, 7, 9, 10, 12, 10}</td>
<td>10</td>
</tr>
<tr>
<td>{9, 7, 10, 8, 5, 10, 7, 10, 12, 8}</td>
<td>8.5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Q. How many possible bootstrap replicates?

A. 10^{10} B. $10!$ C. e^{10}

\[\frac{3!}{2!} \]

<table>
<thead>
<tr>
<th>Bootstrap replicate</th>
<th>Sample median</th>
</tr>
</thead>
<tbody>
<tr>
<td>${11, 11, 12, 10, 10, 10, 12, 10, 7, 10}$</td>
<td>10</td>
</tr>
<tr>
<td>${7, 10, 10, 10, 9, 7, 9, 10, 12, 10}$</td>
<td>10</td>
</tr>
<tr>
<td>${9, 7, 10, 8, 5, 10, 7, 10, 12, 8}$</td>
<td>8.5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Example of Bootstrap for confidence interval of sample median

- Do the bootstrapping for $r = 10000$ times, then draw the histogram and also find the stderr of sample median.

<table>
<thead>
<tr>
<th>Bootstrap replicate</th>
<th>Sample median</th>
</tr>
</thead>
<tbody>
<tr>
<td>{11, 11, 12, 10, 10, 10, 12, 10, 7, 10}</td>
<td>10</td>
</tr>
<tr>
<td>{7, 10, 10, 10, 9, 7, 9, 10, 12, 10}</td>
<td>10</td>
</tr>
<tr>
<td>{9, 7, 10, 8, 5, 10, 7, 10, 12, 8}</td>
<td>8.5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Example of Bootstrap for confidence interval of sample median

- Bootstrapping for \(r = 10000 \) times, then draw the histogram and also find the stderr of sample median.

\[
\text{stderr}([S]) = \sqrt{\frac{\sum_i [S(\{x\}_i) - \bar{S}]^2}{r - 1}}
\]

mean(Sample Median) = 9.73625
stderr(Sample Median) = 0.7724446
Errors in Bootstrapping

- The distribution simulated from bootstrapping is called empirical distribution. It is not the true population distribution. **There is a statistical error.**

- The number of bootstrapping replicates may not be enough. **There is a numerical error.**

- When the statistic is not a well behaving one, such as maximum or minimum of a data set, the bootstrap method may fail to simulate the true distribution.
The realized sample of CEO salary $N=59$, median=350 K

$r = 10000$

$\text{mean(Sample Median)} = 348.0378$

$\text{stderr(Sample Median)} = 27.30539$
The realized sample of CEO salary $N=59$, median=350 K

$r = 10000$

mean(Sample Median) = 348.0378
stderr(Sample Median) = 27.30539
Checking whether it’s normal by Normal Q-Q plot

- Q-Q compares a distribution with normal by matching the kth smallest quantile value pairs and plot as a point in the graph.
- Linear means similar to normal!

Read Pg 64, 3.2.3, “Introductory statistics with R”
Checking whether it’s normal by Normal Q-Q plot

- Q-Q compares a distribution with normal by matching the kth smallest quantile value pairs and plot as a point in the graph.

- Linear means similar to normal!

Read Pg 64, 3.2.3, “Introductory statistics with R”
CEO salary sample median’s Q-Q plot

- Q-Q plot of CEO salary’s bootstrap sample medians
- It’s roughly linear so it’s close to normal.
- We can use the normal distribution to construct the confidence intervals
95% confidence interval for the median CEO salary from the bootstrap simulation

348.0378 ± 2 × 27.30539

= [293.427, 402.6486]
Assignments

- Read Chapter 7 of the textbook
- Week 8 module on Compass
- Next time: hypothesis testing
Additional References

- Charles M. Grinstead and J. Laurie Snell
 "Introduction to Probability"

- Morris H. Degroot and Mark J. Schervish
 "Probability and Statistics"
See you next time

See you!