"In statistics we apply probability to draw conclusions from data."
---Prof. J. Orloff

Credit: wikipedia
Last time

- Exponential distribution
- Normal (Gaussian) distribution

![Diagram of normal distribution with annotations for 68% and 95% confidence intervals at $\mu \pm \sigma$ and $\mu \pm 2\sigma$]
Objectives

- Sample mean
- Confidence interval
- T-distribution
Motivation for drawing conclusion from samples

In a study of new-born babies’ health, random samples from different time, places and different groups of people will be collected to see how the overall health of the babies is like.
This senate election poll tells us:
- The sample has 1211 likely voters
- Ms. Hyde-Smith has realized sample mean equal to 51%

What is the estimate of the percentage of votes for Hyde-Smith?

How confident is that estimate?
What is a population?
- It’s the entire possible data set \(\{X\} \)
- It has a countable size \(N_p \)
- The population mean \(\text{popmean}(\{X\}) \) is a number
- The population standard deviation is \(\text{popsd}(\{X\}) \) and is also a number

The population mean and standard deviation are the same as defined previously in chapter 1
Population

\[\{X\} = \{1, 2, 3, \ldots, 12\} \quad N_p = 12 \]

\[\text{popmean}(\{X\}) = ? \quad 6.5 \]

\[\text{popstd}(\{X\}) = ? \]

\[\sqrt{\frac{\sum (X_i - 6.5)^2}{12}} \]

3.4...
The sample is a random subset of the population and is denoted as \(\{x\} \), where sampling is done with **replacement**.

- The sample size \(N \) is assumed to be much less than population size \(N_p \).
- The **sample mean of a population** is \(X^{(N)} \) and is a **random variable**.
Sample mean example

Money box

* Shake and take one and put back.

10¢ 25¢
dime quarter

\[X_1 \text{ takes } x_1 = 10 \]
\[X_2 \text{ takes } x_2 = 10 \]
\[X_3 \text{ takes } x_3 = 25 \]
\[\vdots \]
\[X_N \text{ takes } x_N = 10 \]

\[E[X] = ? \]

\[\overline{X}^{(N)} = \frac{\sum X_i}{N} \]
Sample \{x_i\} and Sample Mean \(X^{(N)}\)

\[
\{X\} = \{1, 2, 3, \ldots, 12\}
\]

\[
\{x\} = \{1, 1, 2, 3, 3\} \quad N = 5
\]

One random sample

\[
X^{(N)} \text{ RV takes a value?}
\]

\[
X^{(N)} = \frac{X_1 + X_2 + \cdots + X_N}{N}
\]

Another random sample \(\Rightarrow\) \(\{1, 1, 1, 1, 1, 1\} \Rightarrow X^{(N)} = 1\)

\[
N < N_p
\]

\[
\frac{10}{5} = 2
\]
The sample mean is the average of IID samples

\[X^{(N)} = \frac{1}{N} (x_1 + x_2 + \ldots + x_N) = \text{mean} \{x\} \]

By linearity of the expectation and the fact the sample items are identically drawn from the same population with replacement

\[E[X^{(N)}] = \frac{1}{N} (E[X^{(1)}] + E[X^{(1)}] + \ldots + E[X^{(1)}]) = E[X^{(1)}] \]
Expected value of one random sample is the population mean

Since each sample is drawn uniformly from the population

$$E[X^{(1)}] = \frac{1}{N_p} \sum X_i \frac{1}{N_p} = \text{popmean}$$

therefore

$$E[X^{(N)}] = \text{popmean}$$

We say that $X^{(N)}$ is an unbiased estimator of the population mean.
We can also rewrite another result from the lecture on the weak law of large numbers:

\[\text{var}[X^{(N)}] = \frac{\text{popvar}\{X\}}{N} \]

The standard deviation of the sample mean:

\[\text{std}[X^{(N)}] = \frac{\text{popsd}\{X\}}{\sqrt{N}} \]

But we need the population standard deviation in order to calculate the \(\text{std}[X^{(N)}] \)!
A unbiased estimate of the population standard deviation \(\text{popsd}(\{X\}) \) is defined as:

\[
\text{stdunbiased}(\{x\}) = \sqrt{\frac{1}{N-1} \sum_{x_i \in \text{sample}} (x_i - \text{mean}(\{x_i\}))^2}
\]

So the **standard error** is an estimate of

\[
\text{std}[X^{(N)}] = \frac{\text{popsd}(\{X\})}{\sqrt{N}}
\]

approximation

\[
\frac{\text{popsd}(\{X\})}{\sqrt{N}} \approx \frac{\text{stdunbiased}(\{x\})}{\sqrt{N}} = \text{stderr}(\{x\})
\]
What is the estimate of the percentage of votes for Hyde-Smith? 51%

Number of sampled voters who selected Ms. Smith is:
1211(0.51) ≈ 618

Number of sampled voters who didn’t select Ms. Smith was
1211(0.49) ≈ 593
Standard error: election poll

\[\text{stdunbiased}(\{ x \}) \]
\[= \sqrt{\frac{1}{1211 - 1} (618(1 - 0.51)^2 + 593(0 - 0.51)^2)} = 0.5001001 \]

\[\text{stderr}(\{ x \}) \]
\[= \frac{0.5001001}{\sqrt{1211}} \approx 0.0144 \]

\[N = 1211 \]
\[x^{(N)} = \frac{x_1 + \ldots + x_N}{N} \]

618 "i" for Smith

593 "o" not for her
Sample mean is a random variable and has its own probability distribution, stderr is an estimate of sample mean’s standard deviation when N is very large, according to the Central Limit Theorem, sample mean is approaching a normal distribution with

$$\mu = \text{popmean}\{X\} \; ; \; \sigma = \frac{\text{popsd}\{X\}}{\sqrt{N}} = \text{stderr}\{x\}$$

$$\text{stderr}\{x\} = \frac{\text{stdunbiased}\{x\}}{\sqrt{N}}$$
Interpreting the standard error

Probability distribution of sample mean tends normal when N is large

- 68% within 1 standard deviation
- 95% within 2 standard deviations
- 99.7% within 3 standard deviations of the mean

Credit: wikipedia

\[\mu - 3\sigma \quad \mu - 2\sigma \quad \mu - \sigma \quad \mu \quad \mu + \sigma \quad \mu + 2\sigma \quad \mu + 3\sigma \]

\[\hat{\mu} \approx \text{mean}(x_i) \]

\[\sigma \approx \text{stderr}(\{x_i\}) \]
Confidence intervals

- Confidence interval for a population mean is defined by fraction $\frac{c}{n} = 95\%$.

- Given a percentage, find how many units of stderr it covers.

For 95% of the realized sample means, the population mean lies in [sample mean-2 stderr, sample mean+2 stderr]
Confidence intervals when \(N \) is large

- For about 68% of realized sample means
 \[
 \text{mean}\{x\} - \text{stderr}\{x\} \leq \text{popmean}\{X\} \leq \text{mean}\{x\} + \text{stderr}\{x\}
 \]

- For about 95% of realized sample means
 \[
 \text{mean}\{x\} - 2\text{stderr}\{x\} \leq \text{popmean}\{X\} \leq \text{mean}\{x\} + 2\text{stderr}\{x\}
 \]

- For about 99.7% of realized sample means
 \[
 \text{mean}\{x\} - 3\text{stderr}\{x\} \leq \text{popmean}\{X\} \leq \text{mean}\{x\} + 3\text{stderr}\{x\}
 \]
Q. Confidence intervals

What is the 68% confidence interval for a population mean?

A. [sample mean-2stderr, sample mean+2stderr]
B. [sample mean-stderr, sample mean+stderr]
C. [sample mean-std, sample mean+std]
We estimate the population mean as 51% with stderr 1.44%

The 95% confidence interval is

\[[51\%-2\times1.44\%, \ 51\%+2\times1.44\%] = [48.12\%, \ 53.88\%] \]
Q. A store staff mixed their fuji 🍎 and gala 🍎 apples and they were individually wrapped, so they are indistinguishable. If I pick 30 apples and found 21 fuji 🍎, what is my 95% confidence interval to estimate the popmean is 70% for fuji? (hint: strerr > 0.05)

A. [0.7-0.17, 0.7+0.17]
B. [0.7-0.056, 0.7+0.056]
What if N is small? When is N large enough?

If samples are taken from normal distributed population, the following variable is a random variable whose distribution is Student’s t-distribution with $N-1$ degree of freedom.

$$T = \frac{\text{mean} \{ \{x\} \} - \text{popmean} \{ \{X\} \}}{\text{stderr} \{ \{x\} \}}$$

Degree of freedom is $N-1$ due to this constraint:

$$\sum_{i} (x_i - \text{mean} \{ \{x\} \}) = 0$$
t-distribution is a family of distributions with different degrees of freedom.

- t-distribution with $N=5$
- t-distribution with $N=30$

Credit: Wikipedia

William Sealy Gosset 1876-1937
When $N=30$, t-distribution is almost Normal

t-distribution looks very similar to normal when $N=30$.

So $N=30$ is a rule of thumb to decide N is large or not
Assignments

- Read Chapter 7 of the textbook
- Next time: Bootstrap, Hypothesis tests
- Prepare for Midterm 1
Additional References

- Charles M. Grinstead and J. Laurie Snell
 "Introduction to Probability"

- Morris H. Degroot and Mark J. Schervish
 "Probability and Statistics"
See you next time

See you!