

Credit: wikipedia

"I have now used each of the terms mean, variance, covariance and standard deviation in two slightly different ways." ---Prof.
Forsythe

Last time

- ** Random Variable
- ** Probability distribution
- *** Cumulative distribution**
- ** Conditional probability and joint probability

Objectives

- **Random Variable
- * Independence of random variables
- * Expected value
- * Variance & covariance

Independence of random variables prod tomap PCAOR) = PCAOPCB)

** Random variable X and Y are independent if $P(X=z \cap Y=y)$

$$(P(x,y)) = P(x)P(y)$$
 for all x and y

- * In the previous coin toss example **
- ** Are X and Y independent?
- ** Are S and D independent? S = X+Y D = X-Y

Joint Probability Example

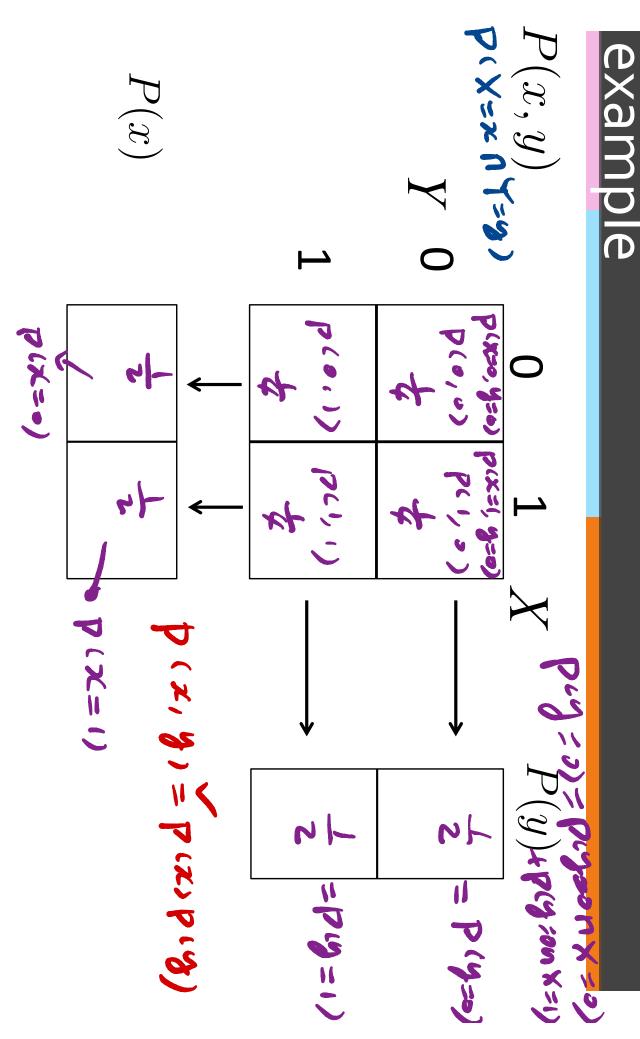
** Tossing a coin twice, we define random variable X and Y for each, P(x)

toss.

$$X(\omega) = \begin{cases} 1 & outcome \ of \ \omega \ is \ head \\ 0 & outcome \ of \ \omega \ is \ tail \end{cases}$$

$$Y(\omega) = \begin{cases} 1 & outcome \ of \ \omega \ is \ head \\ 0 & outcome \ of \ \omega \ is \ tail \ \mathbf{D}_{-} \times \mathbf{A} \end{cases}$$

Joint probability distribution



Joint probability distribution example

$$P(s,d) -1 0 1 D P(s)$$

$$S 0 0 \frac{1}{4} 0 0$$

$$1 \frac{1}{4} 0 \frac{1}{4} 0$$

$$2 0 \frac{1}{4} 0 0$$

$$0 \frac{1}{4} 0 0$$

$$\frac{1}{4} 0 0$$

$$\frac{1}{4} \frac{1}{2} \frac{1}{4}$$

$$P(s=1) = \frac{1}{4}$$

pro, a) + prosped

Joint probability distribution example

 $P(S = 1, D = 0) \neq P(S = 1)P(D = 0)$

Bayes rule for random variable

** Bayes rule for events generalizes to

random variables

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

$$= \frac{P(y|x)P(x)}{\sum_{x} P(y|x)P(x)}$$

Total Probability

example Conditional probability distribution

$$P(s|d) = \frac{P(s,d)}{P(d)}$$

example Conditional probability distribution

$$P(s|d) = rac{P(s,d)}{P(d)}$$
 -1 0 1 D
S 1 1 0 1 D
2 0 0 $\frac{1}{2}$ 0 1

$$P(D = -1|S = 1) = \frac{P(S = 1|D = -1)P(D = -1)}{P(S = 1)} = \frac{1 \times \frac{1}{4}}{\frac{1}{2}}$$

Three important facts of Random variables

**Random variables have probability functions

** Random variables can be conditioned on events or other random variables

** Random variables have averag

Expected value

* The expected value (or expectation)

of a random variable X is

andom variable
$$X$$
 is
$$E[X] = \sum_{x} x P(x)$$

The expected value is a weighted sum of **all** the values X can take

Expected value

*The expected value of a random

variable X is

$$E[X] = \sum_{x} x P(x)$$

$$E[X] = \sum_{x} x P(x)$$

$$E[X] = \sum_{p=1/2} x P(x)$$

The expected value is a weighted sum of all the values X can take

Expected value: profit

* A company has a project that has p probability of losing 10 million. probability of earning 10 million and 1-p

** Let X be the return of the project. What :S.

After class

D M M

chocolate

A can

Fr each

A) random draw (

Expected value?

B) random draw 1 twice with replacement when the two are the same, you get the prize.

Expected value?

Linearity of Expectation

- and constants k,c
- Scaling property E[kX] = kE[X]
- * Additivity

$$E[X+Y] = E[X] + E[Y]$$

$$** And E[kX+c]=kE[X]+c$$

(1233 +(14x]3 x (2 1 1+x]3

Linearity of Expectation

** Proof of the additive property

$$E[X+Y] = E[X] + E[Y]$$

$$E[x+y] = E(s) = \sum_{S} s P(s)$$

$$P(s) = P(S=s) = \sum_{\{S=x,y\} \in S \neq y\}} \sum_{\{S=x,y\} \in S \neq y\}} P(x,y)$$

$$= \sum_{S} \sum_{X} \sum_{\{S=x,y\} \in S \neq y\}} P(x,y)$$

$$= \sum_{X} \sum_{X} \sum_{\{X+y\} \in S \neq y\}} P(x,y)$$

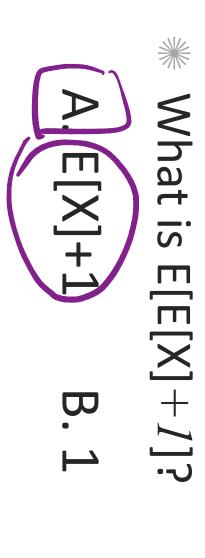
12+X12 いた、 カンナンだり 2-022 1-1 [13- (13- (13) (2) X, Y, 2 ave Bornoulli nith P=a5 7 7 = 0.5 px (1(1)p).0

Proof conti.

[=12+1+x]= $E(x+1)= \sum \sum (x+y)p(x,y)$ x x x p(x,y) + x x y p(x,y)

- E[X] + E[Y] E(x) + \(\nabla \) + \(\nabla \) Xx2 P(x,y)+ZZ b P(x,y)

Q. What's the value?



C. 0

Expected value of a function of X

** If f is a function of a random variable X, then Y = f(X) is a $\mathcal{E}(f(X))$ random variable too

** The expected value of Y = f(X) is E[f(x)] = ?E[1] = 2 4 P(8)

Expected value of a function of X

** If f is a function of a random random variable too variable X, then Y = f(X) is a

* The expected value of Y = f(X) is

$$E[Y] = E[f(X)] = \sum_{x} f(x)P(x)$$

The exchang of variable theorem

ELf(x)] = E[7] = E \$ P(3) if {x} = P(x) = P(x) if several x in {xs} + one y, value = 2 3 P(x) E fix) pix)

(B, dif + (x, d f Z = [1]]

11

\(\frac{1}{2} \fr

- 2 hb(x) - 2 t(x)b(x)

Expected time of cat

 ★ A cat moves with random constant ∨ speed (V) either 5mile/hr or 20mile/hr, expected time for it to travel 50 miles? E[T] $T = \frac{50}{50}$ with equal probability, what's the

O: Is this statement true?

 $P(X \ge a) = 1$, then $E[X] \ge a$. It is: If there exists a constant such that

- A. True
- B. False

Variance and standard deviation

* The variance of a random, variable X is \mathcal{X} is

$$var[X] = E[(X - E[X])^{2}]$$

* The standard deviation of a random variable X is $std[X] = \sqrt{var[X]}$ Jan= (x-E[x])

Properties of variance

constant k

$$var[X] \ge 0$$

$$var[kX] = k^2 var[X]$$

A neater expression for variance

* Variance of Random Variable X is

defined as:

$$var[X] = E[(X - E[X])^2]$$

It's the same as:

$$var[X] = E[X^2] - E[X]^2$$

A neater expression for variance

$$var[X] = E[(X - E[X])^{2}] \qquad (u = E[X])$$

$$= E[(X - E[X])^{2}] \qquad (u = E[X])$$

$$= E[(X - E[X])^{2}] \qquad (u = E[X])$$

$$= E[X - X + u^{2}] \qquad (u = E[X])$$

$$= E[X] - E[X] - E[X] \qquad (u = E[X])$$

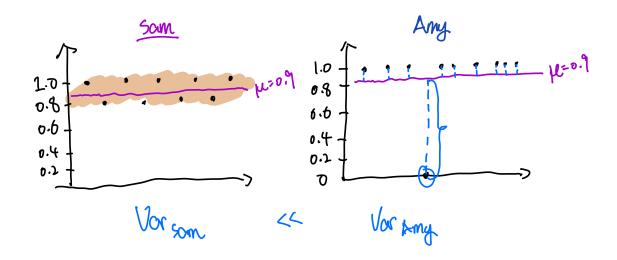
$$= E[X] - E[X] - 2u E[X] + u^{2}$$

$$= E[X] - E[X] - 2u E[X] + u^{2}$$

$$= E[X] - 2u E[X] - 2u E[X] - u^{2}$$

Variance: the profit example

* For the profit example, what is the variance of the return? We know E[X]=



Motivation for covariance

- ** Study the relationship between random variables
- ** Note that it's the un-normalized correlation ~ [-1, 1] indounded.
- * Applications include the fire control presence of noise. of radar, communicating in the

Covariance

*The covariance of random variables X and Y is

$$cov(X,Y) = E[(X-E[X])(Y-E[Y])]$$

$$**$$
 Note that $\omega(x,x) = E[(x-E[x])(x-E[x])]$

$$\underline{cov(X,X)} = E[(X - E[X])^2] = \underline{var}[X]$$

A neater form for covariance

****A neater expression for** for variance) covariance (similar derivation as

$$cov(X,Y) = E[XY] - E[X]E[Y]$$
 $vor(x) = vor(x,x) = E[x\cdot x] - Ex-E[X]$

E[X2] - EX]

Correlation coefficient is normalized covariance

* The correlation coefficient is

$$corr(X,Y) = \frac{cov(X,Y)}{[\sigma_X \sigma_Y]}$$

** When X, Y takes on values with equal $\{(x,y)\}$, the correlation coefficient will probability to generate data sets be as seen in Chapter 2.

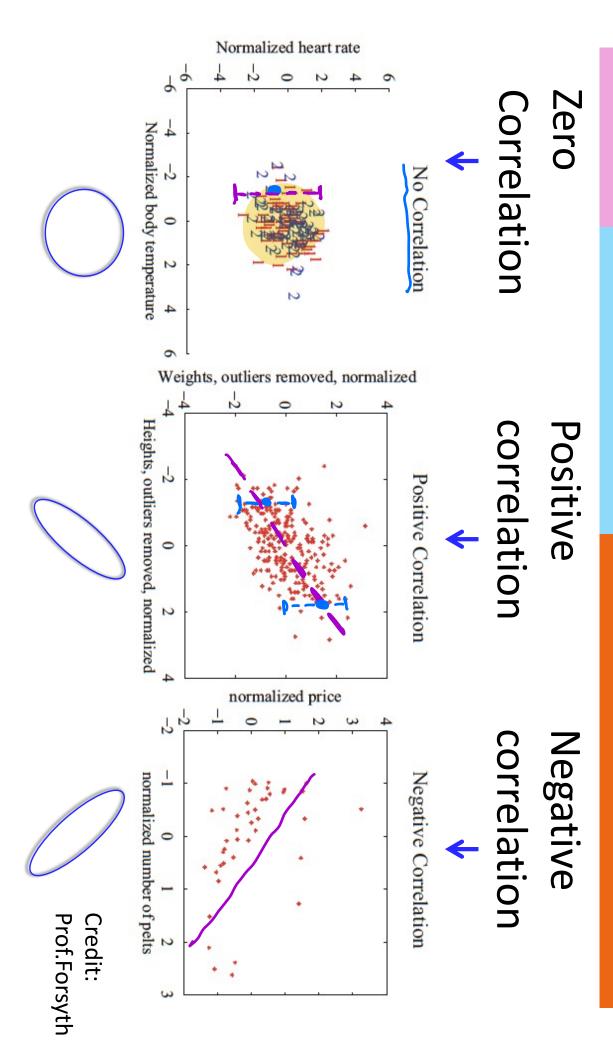
covariance Correlation coefficient is normalized

* The correlation coefficient can also be

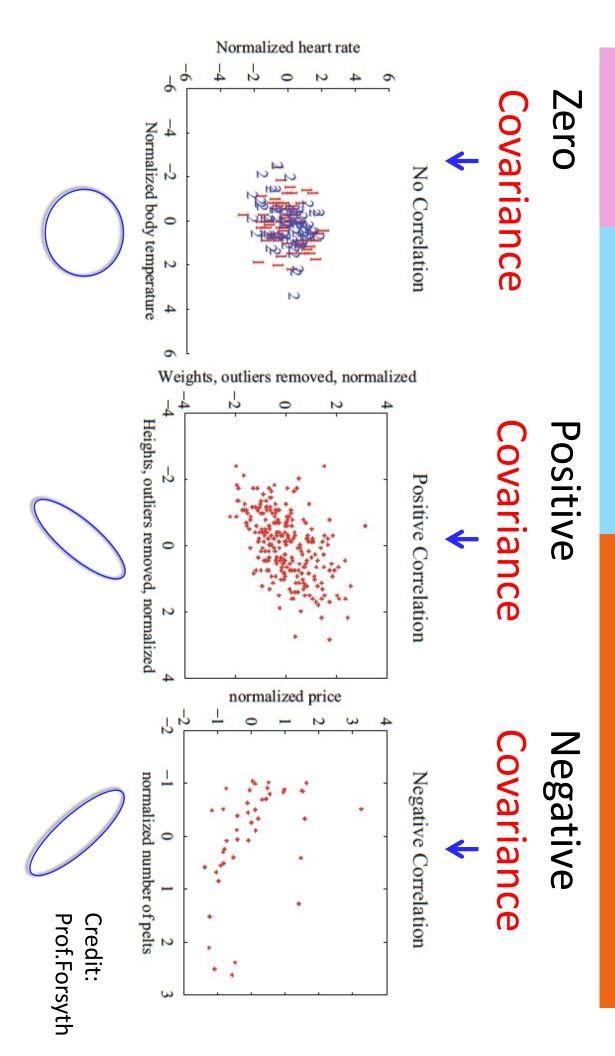
written as:
$$\frac{cocxx}{F[XY] - E[X]E[Y]}$$

$$\frac{E[XY] - E[X]E[Y]}{\sigma_X\sigma_Y}$$

Correlation seen from scatter plots



Covariance seen from scatter plots



When correlation coefficient or covariance is zero

* The covariance is 0! No Correlation

That is:
$$EXXI - EXI - EXI$$

* This is a necessary property of equal to independence) independence of random variables * (not

variables Variance of the sum of two random

$$var[X + Y] = var[X] + var[Y] + 2cov(X, Y)$$

then fevents X & Y are independent,

$$E[XY] = E[X]E[Y]$$
 x= $\begin{cases} 1 & 0.5 \\ 2 & 34 \end{cases}$ P(x, y)

If x, y are independent, P(x, y) = P(x), P(y) $\forall x, y$

= $\begin{cases} 2 & 3 \end{cases}$ $\begin{cases} 2 & 3 \end{cases}$ P(x)

= $\begin{cases} 2 & 3 \end{cases}$ $\begin{cases} 2 & 3 \end{cases}$ P(x)

= $\begin{cases} 2 & 3 \end{cases}$ $\begin{cases} 2 & 3 \end{cases}$ P(x)

= $\begin{cases} 2 & 3 \end{cases}$ $\begin{cases} 2 & 3 \end{cases}$ P(x)

= $\begin{cases} 2 & 3 \end{cases}$ $\begin{cases} 3 & 3 \end{cases}$ P(x)

= $\begin{cases} 3 & 3 \end{cases}$

Assignments

Finish week4 module

** Next time: Markov and Chebyshev inequality & Weak law of large numbers, Continuous random variable

Additional References

- * Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- * Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See!

