
Assembly and processors

Learning objectives
• Don’t be scared of assembly code

◦ understand what it’s for and why
◦ know the pieces used in all assemblies

• Outline the design of computer processors
• Use terminology without embarrassment:

◦ source code, assembly, machine code
◦ compiler, assembler, linker, loader

Let’s try to make this code use less complicated individual steps (but more of them).

int i;
for(i = 0; i < n; i++) {
 data[i] = (i * (i+1)) / 2;
}
printf("done!\n");

Change the loop to a simpler form

int i;
i = 0;
while(i < n) {
 data[i] = (i * (i+1)) / 2;
 i++;
}
printf("done!\n");

Split the math to be one operation per statement

int i, tmp;
i = 0;
while(i < n) {
 tmp = i + 1;
 tmp = i * tmp;
 tmp = tmp / 2;
 data[i] = tmp;
 i++;
}
printf("done!\n");

Convert the array notation to pointer notation

int i, tmp; void *ptr;
i = 0;
while(i < n) {
 tmp = i + 1;
 tmp = i * tmp;
 tmp = tmp / 2;
 ptr = i * sizeof(int);
 ptr = ptr + data;

*(int *)ptr = tmp;
 i++;
}
printf("done!\n");

Remove the ++ and sizeof shorthand.

int i, tmp; void *ptr;
i = 0;
while(i < n) {
 tmp = i + 1;
 tmp = i * tmp;
 tmp = tmp / 2;
 ptr = i * 4;
 ptr = ptr + data;

*(int *)ptr = tmp;
 i = i + 1;
}
printf("done!\n");

Change the loop into explicit moves

int i, tmp; void *ptr;1
i = 0;2
if (i >= n) goto line 12;3
tmp = i + 1;4
tmp = i * tmp;5
tmp = tmp / 2;6
ptr = i * 4;7
ptr = ptr + data;8
*(int *)ptr = tmp;9
i = i + 1;10
goto line 3;11
printf("done!\n");12

Move comparison and string assignment to their own lines

int i, tmp, ok; void *ptr, *s;1
i = 0;2
ok = i >= n;3
if (ok) goto line 13;4
tmp = i + 1;5
tmp = i * tmp;6
tmp = tmp / 2;7
ptr = i * 4;8
ptr = ptr + data;9
*(int *)ptr = tmp;10
i = i + 1;11
goto line 3;12
s = "done!\n";13
printf(s);14

Replace variables with predetermined set of “program registers.” The arguments (n and
data) get the first two (r0 and r1), then locals in the order they are used.

r2 = 0;1
r3 = r2 >= r0;2
if (r3) goto line 12;3
r4 = r2 + 1;4
r4 = r2 * r4;5
r4 = r4 / 2;6
r5 = r2 * 4;7
r5 = r5 + r1;8
*(int *)r6 = r4;9
r2 = r2 + 1;10
goto line 2;11
r6 = "done!\n";12
printf(r6);13

Function calls are two parts: copying the parameters into expected program registers; then a
special kind of goto we can return from using the stack.

r2 = 0;1
r3 = r2 >= r4;2
if (r3) goto line 12;3
r5 = r2 + 1;4
r5 = r2 * r5;5
r5 = r5 / 2;6
r6 = r2 * 4;7
r6 = r6 + r0;8
*(int *)r6 = r5;9
r2 = r2 + 1;10
goto line 2;11
r7 = "done!\n";12
r0 = r7;13
call printf;14

What we’re left with
• arithmetic/logic operations:

◦ variable = constant
◦ variable = variable op variable

• memory operations:
◦ variable = *pointer
◦ *pointer = variable

• instruction sequence control operations:
◦ if variable, go to code location
◦ go to code location
◦ call
◦ return

Assembly (sometimes called assembler code):
• Simple line-oriented textual encoding
• Format operation operand, operand

• Code locations abstracted by labels

• Set of operations, registers, and memory addressing syntax vary by target hardware

mov rax, 1
xor rdi, rdi
cmp r9, r8

somename:
inc rdx
cmp rdx, r9
jng somename

Machine code is a binary encoding of operations

Single instruction example from aarch64:

0 1110001 00 000000101010 00010 00001

32-bit instruction

subs operation

unused

immediate value 42

register w2

register w1

In assembly: subs w1, w2, 42
In C: w1 = w2 - 42; and compares the result to 0 for future conditional jumps
Multiple instructions are concatenated in memory

Vocabulary
Term Meaning

Instruction Single action sent to processor

Machine code Binary representation of individual instructions

Assembly Textual representation of individual instructions (with
labels instead of raw addresses for jumps)

Source code Code in a “high-level” programming language (not
assembly; this includes all code you’ve written)

Instruction set architecture (ISA) Computer design at the level of what machine code they
understand

Jump An instruction that picks a different (not next-in-
memory) instruction to run next

Source code (.c, .java, .py, etc)

1. Compile to assembly (most compilers also assemble and link)

Assembly code (.s, .S)

2. Assemble to object files

Object files, both static (.o, .obj, .a) and shared (.so, .dylib, .dll)

3. Link static files into an executable (shared files get linked during loading)

Executable files (no extension, or .exe)

4. Load into memory (both executable and shared object files)

Machine code in memory

5. Execute by running the instruction in the first byte of the program

Building a Processor
• von Neumann architecture:

◦ Memory = one big array of bytes (both code and data)
• Registers

◦ High-speed on-processor memory
▪ (Built using six NAND gates per bit)

◦ Few in number; usually 32 or 64 bits in size each
◦ Clocked

▪ Usually: register outputs its stored value; input is ignored
▪ When clock bit changes, input copied into stored value

https://www.falstad.com/circuit/e-edgedff.html
https://www.falstad.com/circuit/e-edgedff.html

What does this ciruit do?

i16

XOR

o16

i8

XOR

o8

i4

XOR

o4

i2

XOR

o2

i1

NOT

o1

ANDANDAND

What does this ciruit do over time?

i16

XOR

o16

i8

XOR

o8

i4

XOR

o4

i2

XOR

o2

i1

NOT

o1

ANDANDAND

Need for registers
• Logic is made of many gates
• Gates take time to settle
• Registers wait for all gates to settle (using a clock)

register+1

clock

• Frequency scaling slows down clock when not much going on (saves power)
• Overclocking uses faster clock than chip designers think is safe

Selectively-writeable register

Mux
in

Register out

write
enabled

clock

0
1

Register file
• Goal: support things like r8 = r9 + r10: up to 2 reads and 1 write, selected by index

register
r0

register
r1

register
r2

register
r3

register
r4 ... register

r31

mux

output A

mux

output B

value
to

write

== 0 writeabledst

srcA srcB

Arithmetic Logic Unit (ALU)
• Goal: pick what operation to perform
• Simple version:

◦ Build a + circuit
◦ Build a - circuit
◦ Build a * circuit
◦ Build a / circuit
◦ Build a < circuit
◦ Build a & circuit
◦ …
◦ Send operands to all of those circuits
◦ Pick one circuit’s output with a Mux

• Fancier versions save power by not sending operands to unused circuits

Putting it together
1. A register called the program counter (PC) stores the next address to fetch an instruction

from
2. The instruction is loaded from memory at that address
3. The instruction is decoded, broken into pieces with

◦ operation sent to the ALU
◦ srcA, srcB, and dst sent to the register file
◦ jump target sent to the net PC stage
◦ memory address sent to memory

4. The instruction is executed, letting the ALU and memory do their thing
5. The processor writes back the results, meaning:

◦ if the instruction had a register destination, the register file updates
◦ if the instruction was a jump, the target is written to the PC

otherwise, the old PC value + the size of the instruction is written to the PC
6. The clock ticks and the whole thing repeats for the next instruction

clock

PC

Memory

instruction

op srcA srcB dst jump
target

+4

mux

jump
target

jump?

0
1

mux value

register
file

srcA
srcB

dst
data

result
0
1

(from op)

A

B

ALU result

op

ad
dr

es
s

va
lu

e

Memory data
(from op)

read
write

neither

Processor Summary
Processors consist of
• Muxes combining

◦ Registers
◦ Arithmetic circuits (like the adder we showed previously)

• With inputs selected based on parts of an instruction
◦ Which is bits read from memory
◦ At an address from the PC

▪ A register
▪ Incremented each clock tick
▪ Sometimes assigned a new value by a jump instruction

Other things processors do
• push and pop

◦ one register points to top of stack
◦ these actions both (a) load/store from top of stack and (b) change where top is

• call and return
◦ call is both (a) push address of next instruction and (b) jump
◦ return pops address into the PC instead of into a program register

• syscall
◦ Switches from for code to the operating system’s code
◦ A bit like call, with other complexity we’ll discuss later

• Operating-system only instructions, such as
◦ Receive data from other hardware (keyboard, mouse, etc)
◦ Send data to other hardware (disk, network, screen, etc)
◦ Change which process is running

