

2's complement | Virtual Memory

Updates

1. MP4 UTF-8 due next Tuesday

- 1. HW 4 due next Thursday
 - a. Wednesday night at midnight if you prefer

Agenda

1. Negative Numbers - 2's complement

1 Virtual Memory

3 Bit shifting practice

Concept behind 2 10 9:3/3 =12%10 = 2 16610=W

Negative Numbers with Bits

Negative Numbers with 2's complement

What decimal number do these 8 bits represents? Assume it is a signed data type.

What decimal number do these 8 bits represents? Assume it is a signed data type.

What decimal number do these 8 bits represents? Assume it is an unsigned data type.

0b1000 0100

Virtual Memory

Virtual Memory Example #1

Virtual Memory Example #2

Am I guaranteed that ptr and ptr2 hold values 6,000 bytes apart in physical memory?

Am I guaranteed that ptr and ptr2 hold values 6,000 bytes apart in virtual memory?

```
char x = 7;

char *ptr = &x;

char *ptr2 = ptr + 6000;
```


If program 1 stores my password in a c-string at virtual address 0xB50632 will this code in program 2 get me that password?

char *ptr = 0xB50632; printf("%s", ptr);

Is it possible for these two programs to print out the same value while running concurrently?

progbiere

Virtual Memory Definition

Permissions read sing. Acag outo Stach near Me globals

Assume that char, short, and int are signed integer types with 8, 16, and 32 bits respectively; and that we've declared and initialized x as

Which of the following causes x == y to be true?

- (a) short y = 0xf;
 - (b) short y = 0xf;
- (c) short y = 0xfff1;
- $\bigcirc (d) \quad \text{short } y = -0 \times 10;$

0000

What is -1? As a short?

Making Masks with Bitwise Operations

View

What is x in bits?

Making Masks with Bitwise Operations

Viev

Assume that char, short, and int are signed integer types with 8, 16, and 32 bits respectively; and that we've declared and initialized x as

short x = (-1) << 4;

Does x represent a positive or negative number assuming 2's complement?

0x 000F

X0×0010

Making Masks with Bitwise Operations

View

What is x as a negative hex?

Making Masks with Bitwise Operations

View

Assume that char, short, and int are signed integer types with 8, 16, and 32 bits respectively; and that we've declared and initialized x as

short x = (-1) << 4;

Assume that char, short, and int are signed integer types with 8, 16, and 32 bits respectively; and that we've declared and initialized x as

short
$$x = (-1) << 4;$$

Which of the following causes x == y to be true?

- (a) short y = 0xf;
- (b) short y = 0xf;
- (c) short y = 0xfff1;

Assume that char, short, and int are signed integer types with 8, 16, and 32 bits respectively; and that we've declared and initialized x as

int
$$x = \sim ((-1) << 24);$$

Which of the following causes x == y to be true?

- (a) int y = 0x1000000;
- (b) int y = (1 << 24) 1;
- \bigcirc (c) int y = 0x1000000;
- (d) int y = 0xffffff;

What is -1 as an int?

Making Masks with Bitwise Operations

View... ▼

```
int x = \sim ((-1) \ll 24);
```

What is -1 << 24 as an int?

Making Masks with Bitwise Operations

View... ▼

```
int x = \sim ((-1) \ll 24);
```

What is x in bits?

Making Masks with Bitwise Operations

View... ▼

```
int x = \sim ((-1) << 24);
```

Does x represent a positive or negative number assuming 2's complement?

Making Masks with Bitwise Operations

View... ▼

```
int x = \sim ((-1) << 24);
```

What is the answer?

Making Masks with Bitwise Operations

Assume that char, short, and int are signed integer types with 8, 16, and 32 bits respectithat we've declared and initialized x as

Q17
Code
340

int
$$x = \sim((-1) << 24);$$

Which of the following causes x == y to be true?

- (a) int $y = 0 \times 10000000$;
- (b) int $y = (1 \ll 24) 1;$
- (c) int $y = -0 \times 10000000$;
- (d) int y = − 0xffffff;

Bit Sets

Set - Collection of things with no repeats or enforced order

How many bytes do I need to represent a set of 16 items?

What operation would I need to find the union of two fruit basket sets?

What operation would I need to find the intersection of two fruit basket sets?

Bit Sets - Used as flags

```
NAME
       open, openat, creat - open and possibly create a file
LIBRARY
       Standard C library (libc, -lc)
SYNOPSIS
       #include <fcntl.h>
       int open(const char *pathname, int flags);
       int open(const char *pathname, int flags, mode_t mode);
       int creat(const char *pathname, mode_t mode);
       int openat(int dirfd, const char *pathname, int flags);
       int openat(int dirfd, const char *pathname, int flags, mode t mode);
```