Would you rather A) all trafic lights turn green for you B) never have to CS 340 stand in line again

Q1

Code
340

Storing Data Types

Updates

- 1. MP2 due today!
- 2. HW 3 due Thursday 1:59pm
- 3. Exam 1 September 23rd
 - a. Sign up now! By the 18th.
 - b. Study guide & Practice Exam out
 - c. No class next Tuesday (23rd)
 - d. Submit DRES to CBTF Directly
- 4. MP3 out today! Due Tuesday in 2 weeks

Big Picture

Storing Data Types

Today's LGs:

- Be able to go between hex, decimal, and binary
- Understand how bits and bytes are stored in a computer
 - Little and big endianness
- Understand implications in C of things are stored in a computer

Bytes

Bytes

Idea 1 - Bytes are a unit indicating 8 bits (1's and 0's)

Idea 2 - The base-2 (binary) number system is a way of interpreting 1's and 0's to represent bigger numbers

How do we talk about big numbers?

My computer's memory holds... 64 GB

Value	base-10	Suffix	Pronounced
2 ¹⁰	1024	(F)	Kilo
2^{20}	1,048,576	Mi	Mega
230 \	1,073,741,824	Gi	Giga
2^{40}	1,099,511,627,776	1	Tera
2^{50}	1,125,899,906,842,624	Pi	Peta
2 ⁶⁰	1,152,921,504,606,846,976	Ei	Exa

Translate the following, 327B

2^(45) Bytes = 2 7 ? TB

Value	base-10	Suffix	Pronounced
2 ¹⁰	1024	Ki	Kilo
2^{20}	1,048,576	Mi	Mega
2 ³⁰	1,073,741,824	Gi	Giga
2^{40}	1,099,511,627,776	Ti	Tera
2 ⁵⁰	1,125,899,906,842,624	Pi	Peta
2 ⁶⁰	1,152,921,504,606,846,976	Ei	Exa

How do we talk about small numbers?

6056-110

What's the biggest value in decimal we can represent with 1 byte?

VB 643216 84

How many bits can 1 digit in hexadecimal represent?

0000 8 42 1 111 1 -7 15

How many digits of hexadecimal are needed to represent 1 byte?

Bytes

Idea 1 - Bytes is a unit indicating 8 bits (1's and 0's).

Idea 2 - The base-2 (binary) number system is a way of interpreting 1's and 0's to represent bigger numbers

Idea 3 - To make bytes easier to work with we represent the value the bits hold in hexadecimal instead of binary.

Idea 4 - Hexadecimal is easy to convert to binary and back.

What is 0x4F in binary?

How many bytes do I need to store this value? 0kB9E85

Why we don't use base-15 or base-17 instead of base-16?

Data Lypes

Data is stored as bytes

A data type is how we interpret the bytes

Image A is displayed in ascii characters, what is image B displayed in?


```
1 #include <stdio.h>
2
3 int main()
4- {
5    printf("Hello World");
6
7    return 0;
8 }
```

A char holds 1 byte, what's the biggest value it can hold in hexadecimal?

How many hex digits are a byte?

Char - 1 byte

- Can print out as an ascii character
- Can hold 1 byte 8 bits

Int - 4 bytes

- Can print out as negative or positive number (more on this later)
- Can hold any value between 0x0000000 and 0xFFFFFFFF

Little and Big Endian - the order the bytes are stored

Big endian-big end first little endian - so small end first int, dec=400 -4 bytes = 0x000000190 [00] [00] [01] [90] 1:He ensur [90] [01] [00] [00]

Little and Big Endian - the order the bytes are stored

Char - OxFA

no endianress relevant

Int - <u>OxABO00110</u>

Below we show ten bytes of <u>little-endian memory</u> at several addresses, using 2-hex-digit representations of each byte.

 Address
 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

 Value
 A5
 D3
 AC
 D6
 77
 2A
 37
 3B
 30
 46

0

Suppose a uint16_t *p (i.e. a pointer to unsigned 16-bit integers) has value p = 1005

What is the value of *(p-1)? Answer in hexadecimal.

2 bytes

Save & Grade

Save only

New variant

340

Below we show ten bytes of little-endian memory at several addresses, using 2-hex-digit representations of each byte. Address 1000100110021003100410051006100710081009 Value DC 6D 58 ΑF 49 F6 Suppose a uint16 + *p (i.e. a pointer to unsigned 16-bit integers) has value p = 1006. What is the value of p 111? Answer in hexadecimal. clicker.cs.illinois.edu p[1] integer 0 Save & Grade Save only ~Code~

Below we show ten bytes of **big-endian memory** at several addresses, using 2-hex-digit representations of each byte.

Address	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009
Value	D5	14	F2	07	В3	4E	ЗА	C4	BD	2C

Suppose a $uint16_t *p$ (i.e. a pointer to unsigned 16-bit integers) has value p = 1006.

What is the value of *(p - 1)? Answer in hexadecimal.

Below we show ten bytes of **little-endian memory** at several addresses, using 2-hex-digit representations of each byte.

Address	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009
Value	6F	78	65	8E	E5	92	EO	8F	E8	FE

Suppose a $uint16_t *p$ (i.e. a pointer to unsigned 16-bit integers) has value p = 1005.

What is the value of *(p + 1)? Answer in hexadecimal.

Does my computer use little or big endian?

Given the computer stores bytes in little-endian, how would I print out <u>'a'?</u>

Q16

Code
340

Any feedback for us?

https://forms.gle/hk8kKjPRfLrowpwX6