Far sitrom out of prof. schatz's favorites

CS 340

Building Blocks 0b10 (Selection and Information Storage)

Updates

- 1. MP 2 due next Tuesday.
- 2. HW 3 due next Thursday 1:59pm
 - a. Building Blocks
 - b. If you need help with gates (see video posted on campus wire and the website)
- 3. Exam 1 September 23rd Tyesday no class
 - a. Sign up now! By the 18th.

Building Blocks Ob10

Today's LGs:

- Be convinced you can use gates to build calculations and selection.
- Have a brief understanding of why we use base-2 for storage
- Be able to articulate that
 - Computers have different types of storage hardware
 - We utilize the different types of storage by using caching
 - Caching algorithms rely on spatial and temporal locality
- Be able to identify if code is cache friendly or not

Building Blocks

- 1. Circuit Basics
 - 2. Gates
- 3. Binary
- 4. Arithmetic Computations
- 5. Selection
- 6. Storage

Arithmetic Calculations

Arithmetic Galculations in Logic
$$5+3=8$$
 $x=5=0101$ $y=3=0011$ $y=3=0011$ $y=3=0011$ $y=3=0011$ $y=3=0011$ $y=3=0011$ $y=3=0011$ $y=3=0011$ $y=3=0011$ $y=3=000$ $y=3$

Arithmetic Calculations in Logic

$$Z_{0} = x_{0}^{4}y_{0}$$
 $C_{1} = x_{0}^{4}y_{0}$
 $Z_{1} = C_{1}^{4}x_{1}^{4}y_{1}^{4}$
 $C_{1+1} = (x_{1}^{4}x_{1}^{4}y_{1}^{4}) / (c_{1}^{4}x_{1}^{4}x_{1}^{4})$

Arithmetic Calculations in Hardware

Arithmetic Calculations in Hardware

clicker.cs.illinois.edu

Q3

~Code~ 340

$$0+0=0$$

Selection

MUX (sounds like ducks with an m)

What is the output?

clicker.cs.illinois.edu

MUX can scale! $\begin{bmatrix} 5,6 \end{bmatrix}$

How many 2-MUX for a 8 selection?

depth =3

What depth of 2-MUX's for a 16 input selection? $\frac{1}{100}$

What depth of 2-MUX's for a 9 input selection?

4

MUX Takeaways

selects I From many more depth = bad Slower

Summary Slide

- 1. Circuit Basics
- 2. Gates
- 3. Binary
- 4. Arithmetic Computations
- 5. Selection
- 6. Storage

Storage

Hardware for Storing Information

store 1 or 0 _____volatile - goes away when off non volatile -> stay when off Flip-flop fost, smill SRAM DRAM Volatile SSD -non volatile Big, Slow

Hardware for Storing Information

Caching RAM

Caching RAM

what is most likely reuse things
Locality time
temporal time
spatial - space

Caching - an algorithm for utilizing fast and small memory and small big memory. We keep copies in higher levels for quick access

Locality - the idea that computers often use nearby and similar information sequentially. Local and temporal locality.

Computer Information Storage

Can you change this code for better locality?

```
1 nt arr1[500];
                         an 2

¬int arr2[500];
    //add stuff to arrays
     int count = 0;
10 \neg for(int i = 0; i < 500; i++){
      if(arr1[i]%2 == 0) count++;
11
        >if(arr2[i]%2 == 0) count++;
12
13
```


Can you change this code for better locality?

8 int doub 500 450;

Building Blocks

- 1. Circuit Basics
- 2. Gates
- 3. Binary
- 4. Arithmetic Computations
- 5. Selection
- 6. Storage