What is wour expelience
With ¢

it ADE';@ cs 340

ner |
C’_qu'*. .
\
N i‘g(
5 \
e T

C without the ++

clicker.cs.illinois.edu

clicker.cs.illinois.edu

What percentage of the class] 4]
do you think answered “Heard VRN
of C but haven't used it" ~Code~ Elﬁﬁ

631,
S22 A\

Updates

1. MP O - Setup due Tuesday.
a. You may need 2-3 days to get it working

2. MP 1 - debugger due Tuesday

3. HW 2 Due NEXT Thursday _1_:59pn_1_ =~
a. Overview and C coding e

ﬂ

Learning G from G++

Today’s LGs:
- Be able to compare C++to C /
- Be able to read and understand C code
- Be able to write C code from scratch

= | —

1. Why CE~ é
2. No|Classes, new or delete, strings, cout \
3. Demo&—

Why G?

How is C different from GC++?

1. No templates &~

2. No classes

3. No overloading

4. No new or delgte_r

5. No pass-by-reference
6. No standard C++ library

'AYe) {b\r‘ﬂ\ﬁ?
(5 0\)\(

M‘Qs C\F‘ C

How confused/nervous are you to code in G
without the ++ features?

uyy

o

A
\\ l
@

C'}

%

.a

Is this valid C code? clicker.cs.illinois.edu
| "_J.
. %ﬁ\‘?
\J\{\‘?" \o b

struct food {
int amount;
int age;

int can_eat() {
(amount

Structs strategy/style

1. Create a struct with ONLY member variables

2. Write functions that work with a pointer to an instance of

the struct ‘
typedef doct food & /T can_ea® (foud ¥saF)§
o ot Flself-Sag 210)
b or &
Mage) (efuln\ -
?’ xﬁné‘j /
etun O

2 /

typedef struct food {
int amount; clicker.cs.illinois.edu
int age;
} food;

|void food_init(food 'self, int am) {
self -amount = am;
self-~age = 0;

int main(){ int main(){ int maini){
food fd: food fd(2); food fd = food_init(&fd, 2);
food_init(fd, 2); 1 }

//allocates size bytes on the heap and returns a S b\\(S
//pointer to 1at memory location on the heap.

//frees the memory at ptr from the heap
void free(void *ptr);

tmlf‘ AN L\ { r[i\\-
[l gr = malloc (_Qzec:F(ith'B\j
k ?jf(‘ oot \0;
(ee \ p)\'ﬂ J NOLL

e

What are some common memory
management errors?

dDUble ‘Fff.’,ﬁ,
Memoly leakl —
b&é MmEmaoy

Sraclk GYE’(‘P oW~

ad & & eQ

d@mé mem:ifj

What should go in the box? clicker.cs.illinois.edu

5 int main(){
int *arr \\"O\/ DK
arr[0] 1:
'(arr i) Vs
arrl2] = arr[@] + arr[1l];
Carr);

GL-§triggs \
chot $35] = £C, 'S, \0Y
char <21 = ((CS‘\}‘

Choe T gle 4%5“ l

CNa¢ ¥ sS = aaloc (thE’DJE (C}\O\aﬁj}
L56

SYe N /

#include <string.h>

O strlen()/_"’
® strcpy() =

stemp) &

® ..more
—_—

What printS? Why? clicker.cs.illinois.edu

i :
<CT N1 Nao N
<oLI LIIY.I\~>

<STULO., I

int main(){
char s2[3] = "CS*;
char_s3[3] = {'C",'S", "\@'};
if (s2 s3) {

7

{"res™);

U1 B W N =

@)

\\I
Nd

(00

O

6§ ‘*~>O~£f00' clicker.cs.illinois.edu

What prints? Why?

3 : - :
<STONC NS
So LULD .|

int main(){
char s2[3] =G5
char *s3 =|s2;

U1 H LN =

~ O

F (s? s3) {
("Yes");

S O 00

What is the issue with the top code snippet?

5 int main(){
6 char *s1 (char)*3);
s] —C5—;

(sl);

What is the issue with the top code snippet?

int main(){
char *sl zeof(char)*3);
siv=""0S7"

int main(){
char *sl (sizeof(char)*3);
(s1)y "CS");
(sl);

Need a refresher on pointeis[c-strings@g!s?

Fill out this form to be
added to the free
coursera course!

int printf(format string’) args);

1. %d or or integers

2. %f: for floating-point numbers (floats and doubles)

3. %c: for characters

4. %s: for C strings 11 - int main() {

’ int X =5
double y
char *str

5. ...more

(.

int puts(const char *str);

Just C-Strings!

int main() {
char *str = "Bye";

Chit;

(str);

No vectors,
maps, linked-
lists, sets... ect

~o Demo

Your Turn

	Slide 1: CS 340
	Slide 2: What percentage of the class do you think answered “Heard of C but haven’t used it”
	Slide 3: Updates
	Slide 4: Learning C from C++
	Slide 5: Why C?
	Slide 6: How is C different from C++?
	Slide 7: How confused/nervous are you to code in C without the ++ features?
	Slide 8: No classes
	Slide 9: Is this valid C code?
	Slide 10: Structs strategy/style
	Slide 11
	Slide 12: No new or delete
	Slide 13: //allocates size bytes on the heap and returns a //pointer to that memory location on the heap. void *malloc(size_t size); //frees the memory at ptr from the heap void free(void *ptr); void *malloc(size_t size); //frees the memory at ptr fr
	Slide 14: What are some common memory management errors?
	Slide 15: What should go in the box?
	Slide 16: No strings
	Slide 17: C-Strings
	Slide 18: #include <string.h>
	Slide 19: What prints? Why?
	Slide 20: What prints? Why?
	Slide 21: What is the issue with the top code snippet?
	Slide 22: What is the issue with the top code snippet?
	Slide 23: Need a refresher on pointers/c-strings/arrays?
	Slide 24: No cout
	Slide 25: int printf(“format string”, args);
	Slide 26: int puts(const char *str);
	Slide 27: No vectors, maps, linked-lists, sets… ect
	Slide 28: No Demo
	Slide 29: Your Turn

