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What percentage of the class ] 4]
do you think answered “Heard VRN
of C but haven't used it" ~Code~ Elﬁﬁ
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Updates

1. MP O - Setup due Tuesday.
a. You may need 2-3 days to get it working

2. MP 1 - debugger due Tuesday

3. HW 2 Due NEXT Thursday _1_:59pn_1_ =~
a. Overview and C coding e

ﬂ




Learning G from G++

Today’s LGs:
- Be able to compare C++to C /
- Be able to read and understand C code
- Be able to write C code from scratch
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1. Why CE~ é
2. No|Classes, new or delete, strings, cout \
3. Demo&—




Why G?



How is C different from GC++?

1. No templates &~

2. No classes

3. No overloading

4. No new or delgte_r

5. No pass-by-reference
6. No standard C++ library
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How confused/nervous are you to code in G
without the ++ features?
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Is this valid C code? clicker.cs.illinois.edu
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struct food {
int amount;
int age;

int can_eat() {
(amount




Structs strategy/style

1. Create a struct with ONLY member variables

2. Write functions that work with a pointer to an instance of

the struct ‘
typedef doct food & /T can_ea® (foud ¥saF)§
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typedef struct food {
int amount; clicker.cs.illinois.edu
int age;
} food;

|void food_init(food 'self, int am) {
self -amount = am;
self-~age = 0;

int main(){ int main(){ int maini){
food fd: food fd(2); food fd = food_init(&fd, 2);
food_init( fd, 2); 1 }







//allocates size bytes on the heap and returns a S b\\( S
//pointer to 1at memory location on the heap.

//frees the memory at ptr from the heap
void free(void *ptr);
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What are some common memory
management errors?
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What should go in the box? clicker.cs.illinois.edu

5 int main(){
int *arr  \\"O\/ DK
arr[0] 1:
'(arr i) Vs
arrl2] = arr[@] + arr[1l];
Carr);







GL-§triggs \
chot $35] = £C, 'S, \0Y
char <21 = ((CS‘\}‘
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#include <string.h>

O strlen()/_"’
® strcpy() =

stemp) &

® ..more
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What printS? Why? clicker.cs.illinois.edu
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int main(){
char s2[3] = "CS*;
char_s3[3] = {'C",'S", "\@'};
if (s2 s3) {
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What prints? Why?
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int main(){
char s2[3] =G5
char *s3 =|s2;
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F (s? s3) {
("Yes");
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What is the issue with the top code snippet?

5 int main(){
6 char *s1 (char)*3);
s] —C5—;

(sl);




What is the issue with the top code snippet?

int main(){
char *sl zeof(char)*3);
siv=""0S7"

int main(){
char *sl (sizeof(char)*3);
(s1)y "CS");
(sl);




Need a refresher on pointeis[c-strings@g!s?

Fill out this form to be
added to the free
coursera course!







int printf(format string’) args);

1. %d or or integers

2. %f: for floating-point numbers (floats and doubles)

3. %c: for characters

4. %s: for C strings 11 - int main() {

’ int X =5
double y
char *str

5. ...more
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int puts(const char *str);

Just C-Strings!

int main() {
char *str = "Bye";

Chit;

(str);




No vectors,
maps, linked-
lists, sets... ect



~o Demo




Your Turn
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