
CS 277: Lecture 2

Reminders

● Class Discussion Forum: Please join Ed Stem ASAP!
● PrairieLearn: Please join the Spring 2026 CS 277 class
● Lab 1 is due on Thursday (on PrairieLearn)
● Homework 1 will be released today (on PrairieLearn)

○ Due Monday in 2 weeks
○ Will have problems on topics covered this week
○ Can be solved in groups of 3

def mult(a,b):
 prod = 0
 while (b > 0):
 prod += a
 b -= 1
 return prod

x = 5
y = 3
z = mult(x,y)
print(z)

Global Scope

mult: <code>
x: 5
y: 3
z:

def mult(a,b):
 prod = 0
 while (b > 0):
 prod += a
 b -= 1
 return prod

x = 5
y = 3
z = mult(x,y)
print(z)

Global Scope

mult: <code>
x: 5
y: 3
z:

mult Scope

a: 5
b: 3
prod: 0

def mult(a,b):
 prod = 0
 while (b > 0):
 prod += a
 b -= 1
 return prod

x = 5
y = 3
z = mult(x,y)
print(z)

Global Scope

mult: <code>
x: 5
y: 3
z:

mult Scope

a: 5
b: 2
prod: 5

After one iteration of the while loop

def mult(a,b):
 prod = 0
 while (b > 0):
 prod += a
 b -= 1
 return prod

x = 5
y = 3
z = mult(x,y)
print(z)

Global Scope

mult: <code>
x: 5
y: 3
z:

mult Scope

a: 5
b: 1
prod: 10

After two iterations of the while loop

def mult(a,b):
 prod = 0
 while (b > 0):
 prod += a
 b -= 1
 return prod

x = 5
y = 3
z = mult(x,y)
print(z)

Global Scope

mult: <code>
x: 5
y: 3
z:

mult Scope

a: 5
b: 0
prod: 15

After three iterations of the while loop

def mult(a,b):
 prod = 0
 while (b > 0):
 prod += a
 b -= 1
 return prod

x = 5
y = 3
z = mult(x,y)
print(z)

Global Scope

mult: <code>
x: 5
y: 3
z:

mult Scope

a: 5
b: 0
prod: 15

Executing the return statement

def mult(a,b):
 prod = 0
 while (b > 0):
 prod += a
 b -= 1
 return prod

x = 5
y = 3
z = mult(x,y)
print(z)

Global Scope

mult: <code>
x: 5
y: 3
z: 15

def mult(a,b):
 prod = 0
 print(x)
 while (b > 0):
 prod += a
 b -= 1
 return prod

x = 5
y = 3
z = mult(x,y)
print(z)

Global Scope

mult: <code>
x: 5
y: 3
z:

mult Scope

a: 5
b: 3
prod: 0

Scope

def mult(a,b):
 prod = 0
 print(x)
 while (b > 0):
 prod += a
 b -= 1
 return prod

x = 5
y = 3
z = mult(x,y)
print(z)

Global Scope

mult: <code>
x: 5
y: 3
z:

mult Scope

a: 5
b: 3
prod: 0

Scope

Interpret as
identifier in the
closest enclosing
context. In this
case it would be
the global context.

def mult_rec(a,b):
 if b == 0:
 return 0
 return a+mult_rec(a,b-1)

x = 5
y = 3
z = mult_rec(x,y)
print(z)

Global Scope
mult_rec : <code>
x: 5
y: 3
z:

Recursion in Action

def mult_rec(a,b):
 if b == 0:
 return 0
 return a+mult_rec(a,b-1)

x = 5
y = 3
z = mult_rec(x,y)
print(z)

Global Scope
mult_rec : <code>
x: 5
y: 3
z:

mult_rec Scope
a: 5
b: 3

Recursion in Action

def mult_rec(a,b):
 if b == 0:
 return 0
 return a+mult_rec(a,b-1)

x = 5
y = 3
z = mult_rec(x,y)
print(z)

Global Scope
mult_rec : <code>
x: 5
y: 3
z:

mult_rec Scope
a: 5
b: 3

mult_rec Scope
a: 5
b: 2

Recursion in Action

def mult_rec(a,b):
 if b == 0:
 return 0
 return a+mult_rec(a,b-1)

x = 5
y = 3
z = mult_rec(x,y)
print(z)

Global Scope
mult_rec : <code>
x: 5
y: 3
z:

mult_rec Scope
a: 5
b: 3

mult_rec Scope
a: 5
b: 2

mult_rec Scope
a: 5
b: 1

Recursion in Action

def mult_rec(a,b):
 if b == 0:
 return 0
 return a+mult_rec(a,b-1)

x = 5
y = 3
z = mult_rec(x,y)
print(z)

Global Scope
mult_rec : <code>
x: 5
y: 3
z:

mult_rec Scope
a: 5
b: 3

mult_rec Scope
a: 5
b: 2

mult_rec Scope
a: 5
b: 1

mult_rec Scope
a: 5
b: 0 Recursion in Action

def mult_rec(a,b):
 if b == 0:
 return 0
 return a+mult_rec(a,b-1)

x = 5
y = 3
z = mult_rec(x,y)
print(z)

Global Scope
mult_rec : <code>
x: 5
y: 3
z:

mult_rec Scope
a: 5
b: 3

mult_rec Scope
a: 5
b: 2

mult_rec Scope
a: 5
b: 1

mult_rec Scope
a: 5
b: 0

return 0
Recursion in Action

def mult_rec(a,b):
 if b == 0:
 return 0
 return a+mult_rec(a,b-1)

x = 5
y = 3
z = mult_rec(x,y)
print(z)

Global Scope
mult_rec : <code>
x: 5
y: 3
z:

mult_rec Scope
a: 5
b: 3

mult_rec Scope
a: 5
b: 2

mult_rec Scope
a: 5
b: 1

return 0

return 5

Recursion in Action

def mult_rec(a,b):
 if b == 0:
 return 0
 return a+mult_rec(a,b-1)

x = 5
y = 3
z = mult_rec(x,y)
print(z)

Global Scope
mult_rec : <code>
x: 5
y: 3
z:

mult_rec Scope
a: 5
b: 3

mult_rec Scope
a: 5
b: 2

return 0

return 5

return 10

Recursion in Action

def mult_rec(a,b):
 if b == 0:
 return 0
 return a+mult_rec(a,b-1)

x = 5
y = 3
z = mult_rec(x,y)
print(z)

Global Scope
mult_rec : <code>
x: 5
y: 3
z: 15

mult_rec Scope
a: 5
b: 3

return 0

return 5

return 15

return 10

Recursion in Action

