CS 277: Lecture 2

Reminders

Class Discussion Forum: Please join Ed Stem ASAP!
PrairieLearn: Please join the Spring 2026 CS 277 class
Lab 1 is due on Thursday (on PrairieLearn)

Homework 1 will be released today (on PrairieLearn)
o Due Monday in 2 weeks
o Will have problems on topics covered this week
o Can be solved in groups of 3

def mult(a,b):

prod = 0
while (b > 0):
prod += a

b -=1

return prod

x = b
y = 3
Zz = mult(x,yVy)

print (z)

def mult(a,b):

prod = 0
while (b > 0):
prod += a

b -=1

return prod

x = b
y = 3
Zz = mult(x,yVy)

print (z)

After one iteration of the while loop

def mult(a,b):

prod = 0
while (b > 0):
prod += a

b =1

return prod

X = 5
y = 3
z = mult(x,vV)

print (z)

After two iterations of the while loop

def mult(a,b):

prod = 0
while (b > 0):
prod += a

b =1

return prod

X = 5
y = 3
z = mult(x,vV)

print (z)

After three iterations of the while loop

def mult(a,b):

prod = 0
while (b > 0):
prod += a

b =1

return prod

X = 5
y = 3
z = mult(x,vV)

print (z)

Executing the return statement

def mult(a,b):

prod = 0
while (b > 0):
prod += a

b =1

return prod

X = 5
y = 3
z = mult(x,vV)

print (z)

def mult(a,b):

prod = 0
while (b > 0):
prod += a

b -=1

return prod

x = b
y = 3
Zz = mult(x,yVy)

print (z)

Scope

def mult(a,b):

prod = 0

print (x)

while (b > 0):
prod += a
b -=1

return prod

x = b
y = 3
Zz = mult(x,yVy)

print (z)

Scope

def mult(a,b): Interpret as
prod = 0 identifier in the
print (x) €— closest enclosing
while (b > 0): context Inthis
. case it would be
prod += a

the global context.

b =1
return prod

X = D

y = 3

z = mult(x,vV)
print (z)

Recursion in Action

def mult rec(a,b):
if == 0:
return O
return at+mult rec(a,b-1)

X = 5

y =3

z = mult rec(x,y)

print (z)
Global Scope
mult rec:<code>
x: 5

yv: 3
70

Recursion in Action

def mult rec(a,b):
if b ==
return O
return atmult rec(a,b-1)

X = 5
y 3
z = mult rec(x,y)

Recursion in Action

def mult rec(a,b):
if b ==
return O
return atmult rec(a,b-1)

X = 5
y 3
z = mult rec(x,y)

Recursion in Action

def mult rec(a,b):
if b ==
return O
return atmult rec(a,b-1)

X = 5
y 3
z = mult rec(x,y)

Recursion in Action

def mult rec(a,b):
if b ==
return O
return atmult rec(a,b-1)

X = 5
y 3
z = mult rec(x,y)

Recursion in Action
return O

def mult rec(a,b):
if b ==
return O
return atmult rec(a,b-1)

X = 5

% 3

z = mult rec(x,y)
print (z)

i

Recursion in Action
return O

def mult rec(a,b):
if b ==
return O
return atmult rec(a,b-1)

return 5

X = 5
y 3
z = mult rec(x,y)

Recursion in Action
return O

def mult rec(a,b):
if b ==
return O
return at+mult rec(a,b-1

)
X = 5
y = 3
z = mult rec(x,y)
print (z)

return 5

return 10

Recursion in Action

return 0
def mult rec(a,b):
if == (:
return O return 5
return at+mult rec(a,b-1)
X = O return 10
y = 3 mult rec Scope
z = mult rec(x,vy) Z‘ 35
print (z) '
Global Scope return 15
mult rec:<code>
x: 5
yv: 3
z: 15

