
Trees Tutorial Solutions

13.1a Recursion trees

Assume n is a power of 3 so that the input will always be an integer. Then we get the
following tree:

The tree is described by the following table:
level ”problem size” # nodes work per node total for level
0 n 1 13n 13n
1 n

3
3 13n

3
13n

2 n
3

32 13 n
32

13n
3 n

32
33 13 n

33
13n

...
k n

3k
3k 13 n

3k
13n

...
h n

3h
= 1 3h T (1) = 47 47 ∗ 3h

(Notice that the final row (the leaf level) follows the same pattern for problem size and
number of nodes as the rows above it, but that we also know the problem size must be 1 since
that’s the function’s base case - this is why I’ve written both n

3h
and 1 in that cell, and this is

how we are able to solve for h. Note that the work per node and hence total for level does not

1



follow the pattern of the levels above it; this is why our later summation only sums through
h− 1 and then we have to add in the work in the leaves separately.)

We have n
3h

= 1, i.e. h = log3 n, so there are 3log3 n = n leaves. Thus the total work at
the leaves is n · T (1) = 47n.

From the table, the total work for all non-leaf levels is∑(log3 n)−1
k=0 13n = 13n log3 n.

Putting it all together, our final closed form is 47n+ 13n log3 n.

13.3b Non-grammar tree induction

Let T be a parity tree; we will prove T has the parity property by induction on its height h.
Base: For height 0, T is just a solitary root. That root is also a leaf so it is orange by

rule 1 of parity trees. Thus there is an odd number of leaves (1) and the root is orange, so
T has the parity property.

(Commentary: You might think you need two base cases here: height 0 for an orange-root
case and height 1 for blue-root. However, while including an extra base case doesn’t invalidate
the proof, it’s not actually necessary here - to see that, try following through the logic of the
induction step below using the concrete height 1 tree plugged in for T everywhere.)

Induction: Suppose that all parity trees with height less than h have the parity property.
Then for parity tree T with height h, consider its left and right subtrees Tℓ and Tr, and let
nl and nr be the number of leaves in the respective subtrees. Notice that Tℓ and Tr are also
parity trees, so since they have height smaller than h, by the IH we know they both have
the parity property. (You can not say that they have height h − 1 - one of them definitely
does, but the other could be arbitrarily shorter. This is why it is important that we are using
a strong IH.) Now we get four cases:

Case 1: nℓ and nr are both even. Then by the parity property, Tℓ and Tr both have blue
roots. Then by rule 2 of parity trees, T also has a blue root. And we know the total number
of leaves is nℓ + nr which is even (because its the sum of two evens), so T has the parity
property.

Case 2: nℓ and nr are both odd. Then by the parity property, Tℓ and Tr both have orange
roots. Then by rule 2 of parity trees, T has a blue root. And we know the total number
of leaves is nℓ + nr which is even (because its the sum of two odds), so T has the parity
property.

Case 3: nℓ is even and nr is odd. Then by the parity property, Tℓ has a blue root and Tr

has an orange root. Then by rule 2 of parity trees, T has an orange root. And we know the
total number of leaves is nℓ + nr which is odd (because its the sum of an even and an odd),
so T has the parity property.

Case 4: nℓ is odd and nr is even. See case 3 with the roles of Tℓ and Tr reversed.
Thus T has the parity property in every case, QED.

13.2a Grammar Trees

Proof by induction on the tree height.

2



Base: Notice that trees from this grammar always have height at least 1. The only ways
to produce a tree of height 1 are the third and fourth rules; in each case the tree ends up
with one node labeled a and at most one labeled b.

Induction: Assume that any tree of height less than some k > 1 has at least as many a
nodes as bs. Now consider a generated tree with height k. The root must be labelled S and
the grammar rules that can produce trees of height greater than 1 give us two cases for what
the children are:

Case 1: The root’s children are labeled a, S, b, and S. Let T1 and T2 be the subtrees
rooted at the nodes labeled S, and let a1, a2, b1, b2 be how many a nodes and b nodes are in
each subtree. Since T1 and T2 have height less than k, the IH applies to them, so a1 ≥ b1
and a2 ≥ b2. Putting these two inequalities together and adding one, we establish that
a1 + a2 + 1 ≥ b1 + b2 + 1. And a1 + a2 + 1 is just the total number of a nodes in the tree
while b1 + b2 + 1 is the total number of b nodes, so we have shown that there are at least as
many as overall as bs.

Case 2: The root’s children are labeled S, a, S. The logic here is exactly like case 1
except with one fewer b node, so there are definitely at least as many as as bs.

Thus in every case there are at least as many as as bs, induction complete.

13.4 Challenge Example

a) Proof by induction on the order k of the tree.

Base: A binomial tree of order 0 is defined to have just 1 = 20 node.

Induction: Let k be positive and suppose that for every i < k, a binomial tree of order
i has 2i nodes. A binomial tree of order k is built from 2 binomial trees of order k − 1,
which by the IH have 2k−1 nodes each. Thus the whole tree has 2k−1 + 2k−1 = 2k nodes,
QED.

b) Proof by induction on the order k of the tree.

Base: A binomial tree of order 0 is defined to have just 1 node at level 0.
(
0
0

)
= 1.

Induction: Fix k ≥ 0 and suppose that for every binomial tree with order r ≤ k, at
each level i the tree has

(
r
i

)
nodes. Now consider a binomial tree of order k + 1. By the

definition of a binomial tree, it consists of two binomial trees T1 and T2 each of order k,
where each node in T2 has been ‘shifted down’ one level since T2’s root was connected as
the rightmost child of the root of T1. Note that the IH applies to both T1 and T2. Now
fix a level i. There are three cases:

Case 1: i = 0. In this case T1 contributes 1 node to the level and T2 contributes 0, so in
total there is 1 =

(
k+1
0

)
. (Commentary: note that for this case we don’t actually need the

IH. This is fine. But if you ever find that your entire inductive step doesn’t use the IH,
that would be a major red flag that you’re almost certainly doing something wrong.)

Case 2: i = k + 1. In this case T1 has no nodes at level i. By the IH, T2 has
(
k
k

)
= 1, so

in total there is 1 =
(
k+1
k+1

)
.

Case 3: 0 < i < k + 1. In this case, by the IH we get
(
k
i

)
nodes from T1 and

(
k

i−1

)
nodes

from T2. Thus the total number of nodes at level i is
(
k
i

)
+

(
k

i−1

)
. We simplify that as

3



follows:
(
k
i

)
+
(

k
i−1

)
= k!

i!(k−i)!
+ k!

(i−1)!(k−i+1)!
= k!(k−i+1)+k!(i)

i!(k−i+1)!
= k!(k+1)

i!(k−i+1)!
= (k+1)!

i!(k−i+1)!
=

(
k+1
i

)
.

So there are
(
k+1
i

)
nodes at level i, QED.

4


