
Relations Tutorial Problems

1. Constructing a concrete relation

Construct a relation R on the set {1, 2, 3} such that all the following are true:

• 1R2

• R is symmetric

• R is transitive

• R is not an equivalence relation

(You are constructing just one relation which satisfies all four conditions, not a separate
relation for each condition. You can specify the relation however you want: a diagram with
arrows, a table of related pairs, etc.)

2. Discussion manual problems

Do the following problems from the discussion manual. (Note that when these problems say
something like “Define a relation R on A such that ...”; they mean “We are hereby defining
a relation R on A such that ...”. In particular, it is not asking you to provide a definition.)

• 4.2 parts (a) and (b)

• 4.3 part (a), except you do not need to prove the relation is an equivalence relation.

• 4.3 part (b)

3. Abstract relation proof

Let R and S be symmetric relations on some set A. Define a relation ∼ on A such that
x ∼ y if and only if xRy and ¬(xSy). Prove that ∼ is symmetric.

4. Sorting

(This question is purposefully more open-ended than usual. Don’t worry about getting the
same answer as us, and move on when you don’t have more to profitably discuss.) In pro-
gramming, sorting a list of numbers in ascending order is sometimes called “sorting by <”.
A good sorting API will allow you to sort by user-defined relations - e.g. if you want all
the odds ascending followed by all the evens ascending, this would be sorting by R where
R is defined by “aRb iff either a is odd and b is even, or they have the same parity1 and
a < b”. But there are also relations which are not usable for sorting. In general, what
properties should a relation R have (or not have) in order for “sorting by R” to make sense
(for example, does R need to be reflexive, symmetric, etc?)?

1i.e. they’re both odd or both even

1



Solutions

1. Constructing a concrete relation

R is the relation which relates a to b for each row in this table:

a b
1 2
2 1
1 1
2 2

(Commentary: It turns out the above solution is the only relation that satisfies the given
conditions. To construct it, we can apply the conditions one at a time as follows: First, we
know that 1R2. Then to make R symmetric, we have to also include 2R1. Then to make R
transitive, we have to include 1R1 and 2R2. (Remember that the definition of transitive does
not require that x, y, z be distinct.) Finally we check over all the conditions again to confirm
we are done. You did not have to demonstrate that this is the only possible R, but notice
that if you include 3R3 then the relation would be reflexive and thus an equivalence relation,
and if you make any other additional pair of elements related, then either you will not add
enough to restore symmetry and transitivity, or you will discover that everything has to be
related to everything else, which is again an equivalence relation.)

2. Discussion manual problems

4.2a) • R is a partial order. It is reflexive because every letter has a self-loop, it is
antisymmetric because no arrow has a matching arrow in the reverse direction,
and we can check transitivity by confirming that for every two arrows that can be
‘chained’ one after another (like ARC and CRB), the corresponding third arrow
(ARB) is present.

(To check that a relation defined by an arbitrary diagram is transitive, it helps
to notice that the presence of a self-loop will never cause the relation to be non-
transitive, because the following two statments are always true: xRx∧xRz → xRz,
and xRy∧ yRy → xRy. Note that the absence of a self-loop can sometimes make
a relation non-transitive, as discussed in the lecture.)

• T is not a partial order because it is not transitive: we have CTB and BTD, yet
we do not have CTD.

4.2b) We need to show that ⪯ is reflexive, antisymmetric, and transitive.

• Claim: ⪯ is reflexive. Consider an element (a, b) ∈ Z2. We know that a ≤ a and
b ≤ b, so by the definition of ⪯, (a, b) ⪯ (a, b).

• Claim: ⪯ is antisymmetric. Consider elements (a, b), (c, d) ∈ Z2 such that (a, b) ⪯
(c, d) and (c, d) ⪯ (a, b). Then by the definition of ⪯, we have a ≤ c, b ≤ d, c ≤ a,
and d ≤ b. Since a ≤ c and c ≤ a, we know a = c. By similar logic, we know
b = d. Thus (a, b) = (c, d).

(Recall that in lecture we gave two equivalent versions of the definition for anti-
symmetry; the one used here (xRy ∧ yRx → x = y) is more frequently useful for
proofs.)

2



• Claim: ⪯ is transitive. Consider elements (a, b), (c, d), (e, f) ∈ Z2 such that
(a, b) ⪯ (c, d) and (c, d) ⪯ (e, f). Then by the definition of ⪯, we have a ≤ c,
b ≤ d, c ≤ e, and d ≤ f . Then by transitivity of ≤ we get a ≤ e and b ≤ f , so
(a, b) ⪯ (e, f).

4.3a) By the definition of ∼, [(1, 3)] contains every (c, d) pair where 1+ d = 3+ c, i.e. where
d − c = 2. (For example, it contains (0, 2) and (1001, 1003).) Similarly, we see that
[(0, 4)] contains all pairs where d− c = 4, and [(2, 4)] contains all pairs where d− c = 2
(i.e. it is the same as our earlier [(1, 3)]). More generally, for each integer k there is
one equivalence class [(0, k)] = {(c, d) | d− c = k, c ∈ Z, d ∈ Z} = {(c, c+ k) | c ∈ Z} .

(Each equivalence class is a lower-left-to-upper-right diagonal line in the plane. I chose
[(0, k)] as my ‘canonical’ name for each of these diagonal lines (i.e. naming the line
after the place where it crosses the y-axis), but we could just as well have taken our
pick of infinitely many other possible names, including e.g. [(−k, 0)], naming after the
place where it crosses the x-axis.)

4.3b) By the definition of ∼, [2] contains every integer y where 4 | (3 · 2 + 5y). Since 6 + 5y
and y− 2 differ by a multiple of 4 (i.e. 4(y+2)), we see that 4 | (6+ 5y) iff 4 | (y− 2),
so [2] contains all integers that are 2 more than a multiple of 4, i.e. [2] is precisely [2]4
(the congruence class of 2 mod 4).

Similarly, [3] contains every integer y where 4 | (3 · 3 + 5y). Since 9 + 5y and y − 3
differ by a multiple of 4 (i.e. 4(y − 3)), we see that 4 | (9 + 5y) iff 4 | (y − 3), so [3]
contains all integers that are 3 more than a multiple of 4, i.e. [3] is just [3]4.

By continuing the same logic, we see that there are only 4 equivalence classes and these
are the congruence classes of 0, 1, 2, and 3 mod 4. In fact ∼ is just equivalence mod
4, i.e. x ∼ y if and only if x ≡ y (mod 4).

We will now show ∼ is an equivalence relation by showing it is reflexive, symmetric,
and transitive:

• Claim: ∼ is reflexive. Consider an integer x. 3x+5x = 8x = 4(2x), so 4 | 3x+5x
and thus x ∼ x.

• Claim: ∼ is symmetric. Consider integers x, y such that x ̸= y and x ∼ y.
Then by definition of ∼, 4 | 3x + 5y, i.e. 3x + 5y = 4k for some integer k.
Then 5x + 3y = 8x + 8y − (3x + 5y) = 8x + 8y − 4k = 4(2x + 2y − k). (An
alternate method: replace the previous sentence by “Then 9x + 15y = 12k, so
5x+3y = 12k− 4x− 12y = 4(3k− x− 3y).”) Thus 3y+5x is a multiple of 4, so
y ∼ x.

(This is probably the hardest of the properties to prove. You start with 3x+5y = 4k
and you know you have to end with 5x+3y = 4(something); it may take significant
experimenting with adding equations, multiplying by constants, etc to eventually
find the solution here. Don’t worry about getting everything to fit together in
logical order until you’ve first found all the pieces in your scratchwork.)

• Claim: ∼ is transitive. Consider integers x, y, z such that x ∼ y and y ∼ z. Then
by definition of ∼, 4 | 3x+5y, and 4 | 3y+5z. i.e. 3x+5y = 4k and 3y+5z = 4m

3



for some integers k,m. Adding the equations gives us 3x+8y+5z = 4k+4m, so
3x+ 5z = 4(k +m− 2y) and thus x ∼ z.

3. Abstract relation proof

Let a, b be distinct elements of A such that a ∼ b. By definition of ∼, aRb and ¬(aSb).
Since aRb and R is symmetric, we have bRa. Since ¬(aSb) and S is symmetric, we have
¬(bSa). (This comes from using the definition of symmetry in its contrapositive form, i.e.
for all x, y ∈ A such that x ̸= y, if ¬(yRx), then ¬(xRy).) Finally, since we have bRa and
¬(bSa), then by the definition of ∼, b ∼ a.

4. Sorting

If we are building a relation ⪯ and we want a ⪯ b to mean that a should come before b in
the final sorted list, then the first immediate consequence is that ⪯ must be antisymmetric.
If instead ⪯ is not antisymmetric, that means there’s a distinct a and b where a ⪯ b and
b ⪯ a, and in that case we need to put a before b and also b before a, which is impossible.

We also probably want transitivity. We definitely need to avoid “cycles” in the diagram,
e.g. if a ⪯ b and b ⪯ c and c ⪯ a, then again we have to put a before b and ultimately also
b before a, which is impossible. Transitivity in combination with the antisymmetry from
above will prevent this issue.

(To more fully answer the question, you need to decide if you want to insist that “sorting”
only includes tasks where there is one right answer, such as sorting a list in ascending order,
or if it also includes things like “put all the evens before all the odds, but I don’t care more
specifically than that”. If you want the one-right-answer version, then you need an additional
constraint that for every a, b, either a ⪯ b or b ⪯ a. If you want the more permissive version,
then you don’t need this, and also you can potentially relax the transitivity requirement, as
long as there are still no cycles in the diagram.)

4


