
Week 2 tutorial solutions

General hints/notes

Emphasis should be writing proofs in good style. Stuff to check:

• Proof must be IN LOGICAL ORDER.

• Use a separate piece of scratch paper. Work backwards from conclusion
on scratch paper, then rewrite in logical order for final proof.

• Connector words, punctuation make it easy to read. Use words (e.g.
“therefore”) rather than funny little patterns of dots and arrows.

• Alternate outlines (e.g. contrapositive): proof should start by inform-
ing the reader of the new outline. State contrapositive explicitly.

• Counter-examples should be concrete (e.g. specific numbers)

• At the start of proof, introduce variables and “suppose” assumptions

• Middle of proof: use textbook definitions of concepts (e.g. rational)

• Inequalities: do the algebra, don’t reason from (alleged) maximum/minimum
values

• Justifications: only on interesting steps. Algebra steps don’t need com-
ments.

• Proof should end at the conclusion (not e.g. one step before)

1.2

(b) This universal claim is false, as demonstrated by the following coun-
terexample. Suppose that p = 1 and q = 2. Then (p + q)2 = 9, but
p2 + q2 = 5, so (p + q)2 6= p2 + q2.

Commentary: There are many possible answers; you do not need to
pick the “smallest” counterexample but you should pick one that is easy
to follow - e.g. p = 13, q = 54 is technically correct but a bad choice. It
is also technically possible to classify all possible counterexamples (e.g.
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something like “The claim is false, as shown by any p and q that are
both non-zero.”), but you should not attempt to do so in your solution
since providing a single counterexample is sufficient and much easier.

(c) The claim is not true. Suppose that w, x, y, z are 0, 1,−1000,−5, re-
spectively. These satisfy the conditions that w < x and y < z. How-
ever, wy = 0 > −5 = xz, so wy 6< xz.

Commentary: Again there are many answers, but they may be harder
to find than in part (b). I found this answer by checking what happens
if w = 0. Checking “edge cases” like that is often a good place to
start because you may find that things simplify/cancel - in this case, it
becomes a search for x, y, z where 0 < x, y < z, 0y = 0 ≥ xz, and
suddenly I have lots of freedom to choose y since it disappeared from
the final inequality, and I also have clear direction of how to continue
since I see x must be positive while xz should be negative (or zero).

1.3d

We will proceed by proving the contrapositive, i.e. we will show that for
every real number x, if x < 2 and x ≥ 1 then x2 − 3x + 2 ≤ 0. So let
x be a real number and suppose that x < 2 and x ≥ 1. Since x < 2,
x − 2 < 0. Since x ≥ 1, x − 1 ≥ 0. Therefore (x − 1)(x − 2) ≤ 0. So
x2 − 3x + 2 = (x− 1)(x− 2) ≤ 0, which is what we needed to prove.

1.4a

Let k be an integer and suppose that k > 4. This gives us k2 > 4k, and also
2k > 8 so 2k > 1. Thus we have k2 > 2k + 2k > 2k + 1, so 2k + 1 < k2,
QED.

Commentary: A proof with inequalities will often include a step that seems
to come out of nowhere - e.g. here, it is clearly true that when 2k > 8 we
also have 2k > 1, but how did we know to make that particular leap instead of
many other true statements we could have said (like 2k > 0, or 2k > −100)?
The key is that on your scratch paper beforehand, you should be trying to
make the inequalities look as similar to each other as possible - e.g. in this
case one of them has a k2 so I tried out squaring the other one (which didn’t
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lead anywhere useful, oh well) and also multiplying it by k, and once I had
both k2 > 4k and k2 > 2k + 1 written on the scratch paper, it became clear
that 4k > 2k + 1, i.e. 2k > 1, would be a useful fact to derive which would
allow me to link them.

2.2

Common misconception: You cannot solve parts a and b by setting up
a system of two equations with just two variables, e.g. in part b it is not
accurate to say “x = 6a+ 5 and also x = 10a+ 3”. It is technically accurate
(but confusing) to say “∃a, x = 6a + 5, and also ∃a, x = 10a + 3” because
the quantifiers make clear the separate scopes, but best to just use separate
variable names (i.e. it is correct to say “there are a and b for which x = 6a+5
and x = 10b + 3”).

(a) There is no such x. From the first congruence, we would need x =
7+9p = 1+3(2+3p) for some integer p, so remainder(x, 3) = 1. From
the second congruence, we would need x = 5 + 12q = 2 + 3(1 + 4q) for
some integer q, so remainder(x, 3) = 2. There is no number which has
two different remainders when divided by 3.

Commentary: How did we know to take remainders at all? They’re
frequently useful once you’re already in the world of modular arith-
metic, so worth a try. How did we know to take remainders dividing
by 3 specifically? Notice that if all you have is the congruence x ≡ 5
(mod 12), then you actually can’t determine the value for many re-
mainders, like remainder(x, 7). (Try it!) Given congruences mod 9
and 12, remainder(x, 3) is the only remainder that can be calculated
from both of them.

Alternate solution: There is no such x. From the first congruence,
we would need x = 7 + 9p for some integer p, and from the second
congruence, we would need x = 5 + 12q for some integer q, so 7 + 9p =
5+12q. This rearranges to 3p−4q = 2

3
. But then there are no possible

values for p and q, since the left hand side will always be an integer
while the right is not.

Don’t worry about how exactly to formalize this proof - it’s actually best
presented as a “proof by contradiction”, but we haven’t covered that style
of proof yet.

3



(b) Yes, for example x = 23. 23 = 6 · 3 + 5, and also 23 = 10 · 2 + 3.

2.3a

The claim is false. For a counterexample, consider p = r = 3 and q = 2.
Then gcd(p, q) = gcd(q, r) = 1, but gcd(p, r) = 3.

Commentary: “gcd(p, q) = 1” can be thought of as “p and q have no
common factors”; I found that formulation helpful for developing this coun-
terexample.

2.4a

Let a, b, c be integers and suppose that a|b and b|c. Then by the definition
of divides, b = an and c = bm, for some integers n,m. Then c = (an)m =
a(nm). nm is an integer because n and m are integers, so a|c by the definition
of divides.
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