
Functions Tutorial Solutions

5.1 Nested Quantifiers

b) This is true: 0 is a value for x such that, for every possible value of y,
xy = x. (The domain is very important here - if instead it were e.g.
positive integers, then the statement would be false.)

d) This is false: no matter what value is chosen for y, x = y+1 is a value of x
which differs from y by more than 0.01. (This argument is showing that the
negation of the given statement is true: ∀y ∈ Q, ∃x ∈ R, |x− y| > 0.01.)

5.2 Meditating on the Definition of Onto

a) This translates to “for every element in the co-domain, there is an element
of the domain which maps to it”, which is just the definition of onto.

b) This translates to “every element in the domain maps to (at least) one
element of the co-domain”. This statement is true of all functions, so it
doesn’t represent any interesting named concept.

c) This translates to “there is an element of the co-domain which is mapped
to from every element of the domain”. In other words, this represents the
concept of a function being constant - e.g. this statement is true of the
function f : Z → Z defined by f(x) = 42.

d) This translates to “there is an element of the domain which maps to
every element of the co-domain”. Since every input to a function must
map to exactly one output, the statement is true if and only if the co-
domain has exactly one element. (In pure math I can’t think of any reason
to define a function with a co-domain containing only one element, but
some programming languages like Haskell do actually find it useful to do
this instead of having ‘void’ methods with no return value at all.)

5.4 Abstract onto proof

We need to show that g is onto, i.e. that for every n ∈ N, there is some
pair (x, y) ∈ N2 such that g(x, y) = n. So let n be an arbitrary natural
number. Then since f is onto, there is some k ∈ N such that f(k) = n.
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Similarly, since f is onto, there is some z ∈ N such that f(z) = 1. So then
g(k, z) = f(k)f(z) = n · 1 = n, which is what we needed to show.

(Commentary: I frequently see higher-level arguments like the following
“proof ” that are much more handwavy; do not do this: Claim: g is onto.
“Proof”: f is onto, so there’s a way to output 1, so then g(x, y) = f(x)f(y) =
1 ∗ f(y) = f(y). Then since g is just calling an onto function, it’s also onto.)

7.3 Abstract proof using Composition

a) Suppose that f ◦ g is onto and f is one-to-one. Let y be an element of
B, and consider z = f(y). Since f ◦ g is onto, there is an element k ∈ A
such that (f ◦ g)(k) = z, i.e. f(g(k)) = z. Since f is one-to-one and
f(g(k)) = z = f(y), it follows that g(k) = y. Thus we have found an
element of A which maps to y, so g is onto. QED.

b) Let A = {a}, B = {b, z}, C = {c}. Let f and g be the constant functions
f(x) = c and g(x) = b. Then f ◦ g is onto (because f(g(a)) = c), but g is
not onto (because there is no input which gives the output z).

7.5c Pigeonhole Principle Proof

Split the 10 nights into 5 pairs of consecutive nights (nights 1 and 2, nights
3 and 4, etc). Each of the 61 hours occurs during exactly one of these five
pairs of nights. Since there are more than 12 times as many hours as pairs,
there must be at least one of our pairs which ends up with 13 or more hours,
which was what we needed to prove.

Commentary: Each hour is a pigeon and each pair of nights is a pigeon-
hole. Note that we’re using a slightly generalized version of the pigeonhole
principle: there must always be at least one pigeonhole which contains an
average-or-greater number of pigeons. In this case, the average number of
pigeons is guaranteed to be 61/5=12.2, so some pigeonhole has at least 12.2
- and since we’re working with integers, the only way to have at least 12.2 is
to have at least 13.

WARNING: There are several incorrect solutions which use individual
nights as the pigeonholes rather than pairs of nights, and thus find by the
pigeonhole principle that some night has 7 or more hours. While this step
isn’t wrong, I do not know of any correct solution that continues from there
- see the sanity check page.
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Additional problem

(The intuition behind both parts of this problem is that if we “reverse the
arrows” of f , we get something that isn’t quite a valid function g but is pretty
close. We just have to figure out what else to fix each time. See Figures 1 and
2 for visualizations, but remember these figures are examples, not proofs.)

a) Since f is onto, for every s ∈ B there is at least one t ∈ A such that
f(t) = s. We can thus define g(s) to be the minimum value t ∈ A such
that f(t) = s. (Note that if f weren’t onto then this wouldn’t be a valid
function definition at all - what is the minimum of the empty set?) Now
we will prove that g is one-to-one. Let x, y be elements of B, and let
g(x) = g(y) = z for some z ∈ A. Then by our definition of g, f(z) = x
and also f(z) = y, so x = y, QED.

Figure 1: Visualization for part (a). Left: an onto function f . Middle:
reversing the arrows is not a function because an input has multiple outputs.
Right: arbitrarily keeping only one output for each input (the smallest) makes
g a function, and it is one-to-one.

b) Define f−1 : f(A) → A as the inverse of f where such an inverse is defined
- that is, the function which maps each element of f(A) to its pre-image in
A. (See middle of Figure 2 for an example of what f−1 might look like.)
f−1 is a well-defined function because f is one-to-one, so each element
of the image f(A) has a unique pre-image. Then we can construct g as
follows:

g(x) =

{
f−1(x) if x ∈ f(A)

min(A) otherwise

Now we will prove that g is onto. Let y be an element of A, and then we
need to find an x such that g(x) = y. Consider z = f(y). By definition

3



Figure 2: Visualization for part (b). Left: a one-to-one function f . Middle:
reversing the arrows gives us an onto function from f(A) to A, but it is not a
function at all from B to A because some inputs in B would have no output.
Right: arbitrarily assigning an output (the smallest element of A) to all the
missing inputs makes g a function, and it is onto.

z is in the image f(A), so f−1(z) = y. Then by the definition of g,
g(z) = f−1(z) = y, so z is the element x we needed, QED.
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