
Countability Tutorial Solutions

19.1 Which Kind of Infinity?

A common fast way to show that a set is countable is to note that every element in the set
has a finite representation. Also you may use the fact that there are no infinite sets with
smaller cardinality than N, so if you can show some set X is infinite and |X| ≤ |N|, then
|X| = |N|.

a) Countably infinite. In fact it’s basically the definition of countably infinite - the bijec-
tion mapping it to N is idN.

b) Uncountable. The powerset of a set always has a (strictly) larger cardinality than that
set. (Or a handwavy ‘solution’ thinking about representations: these do not appear to
all have finite representations - if I have an infinite set of naturals with no pattern, how
would I possibly write down that set?)

c) Uncountable. We know R is uncountable, and R ⊆ C.

d) Countably infinite. There are clearly infinitely many elements (in particular at the
very least there are the elements {0}, {1}, {2}, · · · ). To show it’s countably infinite, we
can provide a one-to-one function f mapping these to the (finite) bit strings: given S
with maximum element n, return the bit string of length n + 1 with a 1 in (0-indexed)
position i iff i ∈ S. For example, f({0, 3, 4}) = 10011. And we know the set of bit strings
(or any other strings with a finite alphabet) is countable. (Alternatively, thinking with
representations: each S ∈ X has a roster notation which is finite - e.g. {0, 3, 4}.)

e) Countably infinite. There are clearly infinitely many elements (in particular, at the
very least there are the silly books containing just “a”, “aa”, “aaa”, · · · ). And it’s
countably infinitely because each book is just one (finite) string created using a fixed
(finite) alphabet. (You may be tempted to think of a book as a list of strings separated
by spaces, but that’s making it more complicated than necessary - there’s no need to treat
characters like space and newline any differently from a and b.)

f) Countably infinite. We know Q is countable, and this set is a subset of Q. (Thinking
with representations: these are reals specifically chosen to have expansions that end - i.e.
representations that are finite.)

19.2 A Curious Bijection

a)
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b) Consider the values of x, y satisfying x+ y = k.

Because we are in N, for any such values of x and y we have that y ≥ 0 and therefore
x ≤ k. For any value x ≤ k, we can let y = k − x to achieve x+ y = k.

Thus, x ranges from 0 to k, and f(x, y) = s(x + y) + x = s(k) + x ranges from s(k) to

s(k) + k. Remembering from lecture that s(k) = k(k+1)
2

, we can also write this as:

k(k + 1)

2
≤ f(x, y) ≤ k(k + 1)

2
+ k

c) The preimage of 17 is {(2, 3)}. Note that f(2, 3) = s(5) + 2 = 15 + 2 = 17.

We can show that (2, 3) is the only element in the pre-image by noting from our solution
to part d) that, for all x, y, if f(x, y) = f(2, 3), then x+ y = 2 + 3 = 5. Testing all such
values of x and y shows that (2, 3) is the only element in the pre-image of 17.

(Alternatively, we could argue that there can’t be any other element in the pre-image
because, as demonstrated through parts (d) and (e), f is one-to-one.)

d) Let k = x + y, l = p + q. From the given supposition we know k ̸= l, so without loss of
generality, assume that k < l.

We get the following:

f(x, y) ≤ k(k + 1)

2
+ k [from part (b)]

=
k2 + 3k

2

<
k2 + 3k + 2

2

=
(k + 1)(k + 2)

2

≤ l(l + 1)

2
[k < l, and k, l ∈ Z, so k + 1 ≤ l]

≤ f(p, q) [from part (b)]

This establishes f(x, y) < f(p, q), so f(x, y) ̸= f(p, q), QED.
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e) Suppose not. That is, suppose towards a proof by contradiction that f(x, y) = f(p, q).
Further, let k = x+ y = p+ q. Then:

f(x, y) = f(p, q)

s(x+ y) + x = s(p+ q) + p

s(k) + x = s(k) + p

x = p

Since x = p and x + y = p + q, we have that y = q. But we assumed that (x, y) ̸=
(p, q), contradiction. So our initial supposition must be false, and thus instead we know
f(x, y) ̸= f(p, q); QED.

Additional problem

Lemma: For sets A and B, there exists a one-to-one function f : A → B if and only if there
exists an onto function g : B → A.

Proof: See solution to the “additional tutorial problem” from the Functions week - the
only difference is that now we are working with arbitrary sets instead of subsets of N, so
where that solution uses the function minimum (which can choose a representative from a
set of naturals), we instead have to use the choice function h from the hint. □

We know that by definition, there exists a one-to-one function f : A → B if and only
if |A| ≤ |B|. So now by the lemma, we’ve established that there exists an onto function
g : B → A if and only if |A| ≤ |B|.1

1Optional extra details: The lemma we used actually does not hold if A = ∅ and B ̸= ∅ (can you find
the flaw in the argument?), so our new cardinality definition would have to special-case that situation by
specifying that |∅| < |B| for all non-empty B. Can you see why ∅ does not have to be treated as a special
case in our normal one-to-one-based definition for cardinality?

3


