Countability Tutorial Solutions

19.1 Which Kind of Infinity?

A common fast way to show that a set is countable is to note that every element in the set has a finite representation. Also you may use the fact that there are no infinite sets with smaller cardinality than N, so if you can show some set X is infinite and $|X| \leq |N|$, then $|X| = |N|.$

- a) Countably infinite. In fact it's basically the definition of countably infinite the bijection mapping it to $\mathbb N$ is $id_{\mathbb N}$.
- b) Uncountable. The powerset of a set always has a (strictly) larger cardinality than that set. (Or a handwavy 'solution' thinking about representations: these do not appear to all have finite representations - if I have an infinite set of naturals with no pattern, how would I possibly write down that set?)
- c) **Uncountable**. We know $\mathbb R$ is uncountable, and $\mathbb R \subset \mathbb C$.
- d) Countably infinite. There are clearly infinitely many elements (in particular at the very least there are the elements $\{0\}$, $\{1\}$, $\{2\}$, \cdots). To show it's *countably* infinite, we can provide a one-to-one function f mapping these to the (finite) bit strings: given S with maximum element n, return the bit string of length $n + 1$ with a 1 in (0-indexed) position i iff $i \in S$. For example, $f({0, 3, 4}) = 10011$. And we know the set of bit strings (or any other strings with a finite alphabet) is countable. (Alternatively, thinking with representations: each $S \in X$ has a roster notation which is finite - e.g. $\{0, 3, 4\}$.)
- e) Countably infinite. There are clearly infinitely many elements (in particular, at the very least there are the silly books containing just "a", "aa", "aaa", \cdots). And it's countably infinitely because each book is just one (finite) string created using a fixed (finite) alphabet. (You may be tempted to think of a book as a list of strings separated by spaces, but that's making it more complicated than necessary - there's no need to treat characters like space and newline any differently from a and b.)
- f) **Countably infinite**. We know $\mathbb Q$ is countable, and this set is a subset of $\mathbb Q$. *(Thinking*) with representations: these are reals specifically chosen to have expansions that end - *i.e.* representations that are finite.)

19.2 A Curious Bijection

a)

b) Consider the values of x, y satisfying $x + y = k$.

Because we are in N, for any such values of x and y we have that $y \geq 0$ and therefore $x \leq k$. For any value $x \leq k$, we can let $y = k - x$ to achieve $x + y = k$.

Thus, x ranges from 0 to k, and $f(x, y) = s(x + y) + x = s(k) + x$ ranges from $s(k)$ to $s(k) + k$. Remembering from lecture that $s(k) = \frac{k(k+1)}{2}$, we can also write this as:

$$
\frac{k(k+1)}{2} \le f(x, y) \le \frac{k(k+1)}{2} + k
$$

c) The preimage of 17 is $\{(2,3)\}\)$. Note that $f(2,3) = s(5) + 2 = 15 + 2 = 17$.

We can show that $(2, 3)$ is the only element in the pre-image by noting from our solution to part d) that, for all x, y , if $f(x, y) = f(2, 3)$, then $x + y = 2 + 3 = 5$. Testing all such values of x and y shows that $(2,3)$ is the only element in the pre-image of 17.

(Alternatively, we could argue that there can't be any other element in the pre-image because, as demonstrated through parts (d) and (e), f is one-to-one.)

d) Let $k = x + y$, $l = p + q$. From the given supposition we know $k \neq l$, so without loss of generality, assume that $k < l$.

We get the following:

$$
f(x,y) \leq \frac{k(k+1)}{2} + k \qquad \text{[from part (b)]}
$$

=
$$
\frac{k^2 + 3k}{2}
$$

$$
< \frac{k^2 + 3k + 2}{2}
$$

=
$$
\frac{(k+1)(k+2)}{2}
$$

$$
\leq \frac{l(l+1)}{2} \qquad [k < l, \text{ and } k, l \in \mathbb{Z}, \text{ so } k+1 \leq l]
$$

$$
\leq f(p,q) \qquad \text{[from part (b)]}
$$

This establishes $f(x, y) < f(p, q)$, so $f(x, y) \neq f(p, q)$, QED.

e) Suppose not. That is, suppose towards a proof by contradiction that $f(x, y) = f(p, q)$. Further, let $k = x + y = p + q$. Then:

$$
f(x, y) = f(p, q)
$$

\n
$$
s(x + y) + x = s(p + q) + p
$$

\n
$$
s(k) + x = s(k) + p
$$

\n
$$
x = p
$$

Since $x = p$ and $x + y = p + q$, we have that $y = q$. But we assumed that $(x, y) \neq$ (p, q) , contradiction. So our initial supposition must be false, and thus instead we know $f(x, y) \neq f(p, q)$; QED.

Additional problem

Lemma: For sets A and B, there exists a one-to-one function $f : A \rightarrow B$ if and only if there exists an onto function $g : B \to A$.

Proof: See solution to the "additional tutorial problem" from the Functions week - the only difference is that now we are working with arbitrary sets instead of subsets of N, so where that solution uses the function *minimum* (which can choose a representative from a set of naturals), we instead have to use the choice function h from the hint. \square

We know that by definition, there exists a one-to-one function $f: A \rightarrow B$ if and only if $|A| \leq |B|$. So now by the lemma, we've established that there exists an onto function $g: B \to A$ if and only if $|A| \leq |B|$.¹

¹Optional extra details: The lemma we used actually does not hold if $A = \emptyset$ and $B \neq \emptyset$ (can you find the flaw in the argument?), so our new cardinality definition would have to special-case that situation by specifying that $|\emptyset|$ < $|B|$ for all non-empty B. Can you see why \emptyset does not have to be treated as a special case in our normal one-to-one-based definition for cardinality?