
Big-O Tutorial Solutions

13.1 Recursion trees

a) Assume n is a power of 3 so that the input will always be an integer. Then we get the
following tree:

The tree is described by the following table:

level “problem size” # nodes work per node total for level
0 n 1 13n 13n
1 n

3
3 13n

3
13n

2 n
3

32 13 n
32

13n
3 n

32
33 13 n

33
13n

...
k n

3k
3k 13 n

3k
13n

...
h n

3h
= 1 3h T (1) = 47 47 ∗ 3h

(Notice that the final row (the leaf level) follows the same pattern for problem size and
number of nodes as the rows above it, but that we also know the problem size must be 1
since that’s the function’s base case - this is why I’ve written both n

3h
and 1 in that cell,
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and this is how we are able to solve for h. Note that the work per node and hence total
for level does not follow the pattern of the levels above it; this is why our later summation
only sums through h− 1 and then we have to add in the work in the leaves separately.)

We have n
3h

= 1, i.e. h = log3 n, so there are 3log3 n = n leaves. Thus the total work at
the leaves is n · T (1) = 47n.

From the table, the total work for all non-leaf levels is∑(log3 n)−1
k=0 13n = 13n log3 n.

Putting it all together, our final closed form is 47n+ 13n log3 n.

b) We’ll just describe the tree with a table instead of drawing it:

level “problem size” # nodes work per node total for level
0 n 1 3 3
1 n− 1 2 3 6
2 n− 2 4 3 12
3 n− 3 8 3 24
...
k n− k 2k 3 3 · 2k
...
h n− h = 1 2h T(1) = 1 1 · 2h

From n− h = 1 we get h = n− 1, so there are 2h = 2n−1 leaves, for a total work in the
leaves of 2n−1 · T (1) = 2n−1.

The total work for all non-leaf levels is∑n−2
k=0(3 · 2k) = 3

∑n−2
k=0 2

k = 3(2n−1 − 1).

Thus our closed form is 2n−1 + 3(2n−1 − 1) = 4 · 2n−1 − 3 = 2n+1 − 3.

14.1 Induction with Inequalities

a) Proof by induction on n.

Base: At n = 8: 82 = 64, and 7 · 8 + 1 = 57 which is smaller.

Induction: Fix k ≥ 8 and suppose (as our Inductive Hypothesis) that n2 > 7n + 1 for
each n from 8 through k. In particular, k2 > 7k + 1. Then we get the following:

(k + 1)2 = k2 + 2k + 1

> (7k + 1) + 2k + 1 [by the IH]

= 7k + (2k + 1) + 1

> 7k + 7 + 1 [since k ≥ 8, 2k + 1 ≥ 17 ≥ 7]

= 7(k + 1) + 1

So (k + 1)2 > 7(k + 1) + 1, QED.
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(Commentary: As is frequently the case with these inequality proofs, there is a step that
looks like total magic if we just read from top to bottom: how did we know to replace 2k+1
by 7?? You come up with a step like this by working from both ends and making the
expressions look as close to each other as possible - in this case, after applying the IH,
we have (7k + 1) + 2k + 1 on one end and 7(k + 1) + 1 on the other; only after you’ve
rearranged them to look as similar as possible (i.e. they both have a 7k term and either a
1 or a 2 term) will the ‘magic’ inequality step become apparent.)

c) Proof by induction on n.

Base: We check that the claim holds for n = 2: 1
22

= 1
4
= 3

4
− 1

2
✓

Induction: Fix k ≥ 2 and suppose that 1
22

+ 1
32

+ ... + 1
n2 ≤ 3

4
− 1

n
for n = 2, ..., k. In

particular, 1
22

+ 1
32

+ ...+ 1
k2

≤ 3
4
− 1

k
. Then we get the following:

1

22
+

1

32
+ ...+

1

(k + 1)2
= (

1

22
+

1

32
+ ...+

1

k2
) +

1

(k + 1)2

≤ (
3

4
− 1

k
) +

1

(k + 1)2
[by IH]

=
3

4
+

1

(k + 1)2
− 1

k

=
3

4
+

k

k(k + 1)2
− (k + 1)2

k(k + 1)2

=
3

4
− k2 + k + 1

k(k + 1)2

<
3

4
− k2 + k

k(k + 1)2
[since k > 0, k(k + 1)2 > 0]

=
3

4
− 1

k + 1

Thus 1
22

+ 1
32

+ ...+ 1
(k+1)2

≤ 3
4
− 1

k+1
, QED.

Exponential vs Factorial

1. We want to show there are positive reals k, c such that ∀n ≥ k, 0 ≤ 2n ≤ c · n!. Let
k = 4 and c = 1. Then it remains to show that ∀n ≥ 4, 0 ≤ 2n ≤ n!. This follows from
Claim 50 in the textbook.

2. This statement is false. As a counterexample, consider f(n) = 2n and g(n) = 1. Then
f(n) is O(2n) and g(n) is O(n!), but f(n) is not O(g(n)). (Commentary: Informally,
“g(n) is O(n!)” provides an upper bound on how fast g can grow, but it does not provide
a lower bound.)
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Transitivity of big-O

Fix f, g, h, and assume towards a direct proof that f(n) is O(g(n)) and g(n) is O(h(n)). Then
by definition of big-O, there are (positive real) k0, c0 such that ∀n ≥ k0, 0 ≤ f(n) ≤ c0g(n),
and also k1, c1 such that ∀n ≥ k1, 0 ≤ g(n) ≤ c1h(n). Now we want to show there are k, c
such that ∀n ≥ k, 0 ≤ f(n) ≤ ch(n).

Let k = max(k0, k1) and c = c0c1. Then we need to show ∀n ≥ max(k0, k1), 0 ≤
f(n) ≤ (c0c1) · h(n). To do this, fix n ≥ max(k0, k1). Then we have 0 ≤ f(n) (since
n ≥ max(k0, k1) ≥ k0), and also:

f(n) ≤ c0g(n) (since n ≥ max(k0, k1) ≥ k0)

≤ c0(c1h(n)) (since n ≥ max(k0, k1) ≥ k1)

= (c0c1) · h(n) (rearrange)
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