Nested Quantifiers

Explain why each of the following propositions is true or false:

- (a) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^3 \leq x$
- (b) $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, y^3 \le x$
- (c) $\exists x \in \mathbb{N}, \forall y \in \mathbb{N}, \operatorname{GCD}(x, y) = 1$
- (d) $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, x = y^2$

Solution:

- (a) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^3 \le x$ TRUE
- (b) $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, y^3 \leq x$ FALSE For any choice of y there is a smaller x
- (c) $\exists x \in \mathbb{N}, \forall y \in \mathbb{N}, \text{GCD}(x, y) = 1$ TRUE x = 1 will give GCD(x, y) = 1 for all y
- (d) $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, x = y^2$ FALSE x = 2 there is no y that when squared is 2 in the integers

Function Properties Determine whether each function is onto and/or one-to-one. Briefly explain why it is or give a concrete counter-example showing why it is not. Warning: check each definition to make sure the function is properly defined, e.g. exactly one output for each input, output values all lie in declared co-domain.

- (a) $b: \mathbb{Z} \to \mathbb{Z}$ by $b(n) = 2^n$
- (b) $g: \mathbb{R} \to \mathbb{R}$ by $g(x) = x^3 + 7$
- (c) $l : \mathbb{R} \to \mathbb{R}$ by $l(x) = \lfloor x \rfloor$
- (d) $m: \mathbb{N}^2 \to \mathbb{N}$ by m(x, y) = x y
- (e) $p: \mathbb{Z}^2 \to \mathbb{Z}$ by p(x, y) = xy

Solution:

- (a) $b: \mathbb{Z} \to \mathbb{Z}$ by $b(n) = 2^n$ This is not a function since if n < 0 the result will not be an integer
- (b) $g: \mathbb{R} \to \mathbb{R}$ by $g(x) = x^3 + 7$ This is both one-to-one and onto
- (c) $l : \mathbb{R} \to \mathbb{R}$ by $l(x) = \lfloor x \rfloor$ This is a function but neither one-to-one nor onto
- (d) $m : \mathbb{N}^2 \to \mathbb{N}$ by m(x, y) = x yThis is not a function since in all cases where y > x the result is not a natural number
- (e) $p: \mathbb{Z}^2 \to \mathbb{Z}$ by p(x, y) = xyThis is onto but not one-to-one

One-to-One Prove that the following functions is one-to-one.

$$\mathbb{N} \to \mathbb{Z}$$
 by $h(x) = x^2 + 42$

Solution:

Let $a, b \in \mathbb{N}$ such that h(a) = h(b) $a^2 + 42 = b^2 + 42$ $a^2 = b^2$ Since $a, b \in \mathbb{N}, \sqrt{a^2} = a$ and $\sqrt{b^2} = b$ So a = b

Thus $\forall a, b \in \mathbb{N}$ if h(a) = h(b) then a = b which is the definition of one-to-one so h is one-to-one. \Box

Onto Prove that the following function is onto

$$\mathbb{Z}^2 \to \mathbb{Z}$$
 by $f(x, y) = xy + 27$

Solution:

Let $c \in \mathbb{Z}$ Consider a = 1 since 1 is an integer a is clearly an integer. Consider b = c - 27 since c and -27 are integers clearly b is an integer. So $(a,b) \in \mathbb{Z}^2$ f(a,b) = f(1,c-27) = 1(c-27) + 27 = c - 27 + 27 = cSo for any $c \in \mathbb{Z}$ (a, c) is the preimage of c for f which is the definition

So for any $c \in \mathbb{Z}$, (a, c) is the preimage of c for f which is the definition of onto so f is onto. \Box