
G Carl Evans November 16, 2024 1

Mystery Code I

In line 05 the procedure maxthree is calling itself on a version of the input list with the
kth element (ak) removed. Assume it takes constant time to temporarily remove ak from
the list. (Doing this in constant time actually requires some extra details that we are hiding
for clarity.)

00 maxthree(a1, . . . , an) : list of n positive integers, n ≥ 3)
01 if (n = 3) return a1 + a2 + a3
02 else
03 bestval = 0
04 for k = 1 to n
05 newval = maxthree(a1, a2, . . . , ak−1, ak+1, . . . an)
06 if (newval > bestval) bestval = newval
07 end for
08 return bestval

(a) Describe (in English) what maxthree computes.

(b) Suppose that T (n) is the running time of maxthree on an input array of length n. Give
a recursive definition of T (n).

(c) How many leaf nodes are there in the recursion tree for T (n)? Briefly explain.

(d) Does maxthree run in O(2n) time? Briefly explain why or why not.

Solution:

(a) maxthree computes the largest sum of 3 numbers in the list.

(b) T (3) = c1
T (n) = n · T (n− 1) + c2n+ c3
There loop on lines 4 - 7 runs n times and makes a recursive call each time on a list one
shorter. It also does some constant work inside and outside the loop.

(c) n!
3!

This happens since the last level is when the list is 3 and at each level there are
children equal to the lenght of the list. So n · (n− 1) · · · 3.

(d) Given that there are Θ(n!) leaves even with no other work it is easy to see that it is way
more than O(2n) time.



G Carl Evans November 16, 2024 2

Mystery Code III

Consider an array of n distinct real numbers a1, a2, . . . , an. We say that the array has a
peak at position k if the following two conditions hold for every position j between 2 and n:

(1) If j ≤ k, then aj−1 < aj.

(2) If j > k, aj−1 > aj.

Consider the following procedure to determine position of the peak of an array (assume that
the array does indeed have a peak):

00 procedure FindPeak(a1, a2, ..., an: array of real numbers)
01 if (n = 1)
02 return 1
03 if (a1 > a2)
04 return 1
05 else if (an > an−1)
06 return n
07 k = floor((1+n)/2)
08 if (ak−1 > ak)
09 return FindPeak(a1, . . . , ak−1)
10 else if (ak < ak+1)
11 return FindPeak(ak+1, . . . , an) + k
12 else
13 return k

(a) Consider the array −1, 3, 6, 7, 0. Trace the execution of the above pseudocode and show
that it correctly returns the position of the peak.

(b) At line 07, what is the smallest value that n might contain? Why?

(c) Let T (n) be the worst-case running time of the above pseudocode when the array has
size n. Write a recurrence for T (n), including the necessary base case(s). Assume that
splitting the array (lines 09 and 11) takes constant time.

(d) What is the tightest big-O running time of FindPeak?

Solution:



G Carl Evans November 16, 2024 3

(a) FindPeak([-1 3 6 7 0]) will not match any lines 1,3,5 so will compute the k = 3 and then
take the else if and call FindPeak([7 0]) which will the if at line 3 and return 1. The
original function will then return 1 + 3 = 4.

(b) 3, If n were 1, we would have returned on line 1. If n were 2, we would return on either
line 4 or line 6 (because the first item is either greater than or less than the second/last).
However on an input array with 3 elements whose peak is in the center, like [5, 6, 4], we
can reach line 7.

(c) T (1) = c1
T (2) = c2
T (n) = T (n/2) + c3

(d) If we consider the recursion tree of this code it is clear that at each level there is only
one child and each node only does a constant amount of work. Thus the runtime will
be simply the height of the tree. To compute this we can see that at each level the list
gets smaller by one half so at most the height of the tree is O(log n).


