Worksheet on Sets, Functions, and Relations

Benjamin Cosman, Patrick Lin and Mahesh Viswanathan

Fall 2020

Definitions from the Lecture

- \varnothing is the empty set, \mathbb{Z} is the set of integers, \mathbb{N} is the set of natural numbers (includes 0), and \mathbb{R} is the set of real numbers.
- $R \subseteq S$ holds if $\forall x(x \in R \rightarrow x \in S)$ and $R=S$ if $R \subseteq S$ and $S \subseteq R$.
- Set operations are defined as follows. We assume that U is the universe (i.e., $R \subseteq U$ and $S \subseteq U$).

$$
\begin{array}{ll}
R \cup S=\{x \mid x \in R \vee x \in S\} & R \cap S=\{x \mid x \in R \wedge x \in S\} \\
R \backslash S=\{x \in R \mid x \notin S\} & \bar{R}=U \backslash R \\
R \times S=\{(r, s) \mid r \in R \wedge s \in S\} & \mathcal{P}(R)=\{A \mid A \subseteq R\}
\end{array}
$$

- For a function $f: A \rightarrow B, A$ is the domain $(\operatorname{dom}(f)), B$ is the codomain $(\operatorname{codom}(f))$, and $\{f(x) \mid x \in A\}$ is the range $(r n g(f))$.
- Function $f: A \rightarrow B$ is surjective/onto if $\operatorname{rng}(f)=B$ or $\forall y \in$ $B \exists x \in A(f(x)=y)$.
- Function $f: A \rightarrow B$ is injective/1-to- 1 if $\forall x, y \in A(x \neq$ $y \rightarrow f(x) \neq f(y))$ or (its contrapositive) $\forall x, y \in A(f(x)=$ $f(y) \rightarrow x=y)$.
- A binary relation R with domain A and codomain B is a subset of $A \times B$.

Problem 1. Let consider the following sets.

$$
\begin{array}{lll}
A=\{0,2,4,6\} & B=\{\{0\},\{2\},\{4\},\{6\}\} & C=A \cup \varnothing \\
D=A \cup\{\varnothing\} & E=\left\{n \in \mathbb{N} \mid n^{2} \in \mathbb{N}\right\} & F=\left\{n^{2} \in \mathbb{N} \mid n \in \mathbb{N}\right\}
\end{array}
$$

Answer the following questions about these sets.

1. What are the elements of sets A, B, C, and D ?
2. Which of the following are true? $\varnothing \in A, \varnothing \in B, \varnothing \in C, \varnothing \in D$.
3. Which of the following are true? $0 \in A, 0 \in B,\{0\} \in A,\{0\} \in B$.
4. Which of the following are true $0 \in E, 2 \in E,\{0\} \in E,\{2\} \in E$, $0 \in F, 2 \in F,\{0\} \in F,\{2\} \in F$
5. Is $\}=\{\varnothing\}$?
6. Which of the following are true? $\varnothing \subseteq A, \varnothing \subseteq B,\{0\} \subseteq A,\{0\} \subseteq B$.
7. Which of the following are true? $A \subseteq E, B \subseteq E, A \subseteq F, B \subseteq F$, $E \subseteq F, F \subseteq E$.
8. What are the sets $B \cup C$ and $B \cup D$?
9. What is the set $A \cap B$?
10. What are the sets $B \backslash A, C \backslash A$ and $D \backslash A$?
11. Use the set builder notation to describe the set $E \backslash F$.
12. What are the sets $\varnothing \times B, \varnothing \times D$, and $\varnothing \times E$?
13. What are the sets $A \times B$ and $B \times A$? Are these two sets equal?
14. What are the sets $\mathcal{P}(\varnothing)$ and $\mathcal{P}(\{\varnothing\})$?
15. Which of the following are true? $\varnothing \in \mathcal{P}(A), \varnothing \subseteq \mathcal{P}(A),\{0\} \in$ $\mathcal{P}(A),\{0\} \subseteq \mathcal{P}(A)$.

Problem 2. For any sets A, B, C, prove that $(A \backslash C) \backslash(B \backslash C) \subseteq$ $(A \backslash B)$.

Problem 3. Let $f: A \rightarrow B$ and $g: B \rightarrow C$. Suppose $g \circ f$ is injective.

1. Prove that f is also injective.
2. Is g necessarily injective? Justify your answer.
