Worksheet on Sets, Functions, and Relations

Benjamin Cosman, Patrick Lin and Mahesh Viswanathan Fall 2020

Definitions from the Lecture

- Ø is the empty set, Z is the set of integers, N is the set of natural numbers (includes 0), and R is the set of real numbers.
- $R \subseteq S$ holds if $\forall x \ (x \in R \to x \in S)$ and R = S if $R \subseteq S$ and $S \subseteq R$.
- Set operations are defined as follows. We assume that *U* is the universe (i.e., *R* ⊆ *U* and *S* ⊆ *U*).

 $R \cup S = \{x \mid x \in R \lor x \in S\} \qquad R \cap S = \{x \mid x \in R \land x \in S\} \\ R \setminus S = \{x \in R \mid x \notin S\} \qquad \overline{R} = U \setminus R \\ R \times S = \{(r,s) \mid r \in R \land s \in S\} \qquad \mathcal{P}(R) = \{A \mid A \subseteq R\}$

- For a function $f : A \to B$, A is the domain (dom(f)), B is the codomain (codom(f)), and $\{f(x) \mid x \in A\}$ is the range (rng(f)).
- Function *f* : *A* → *B* is surjective/onto if rng(*f*) = *B* or ∀*y* ∈ B∃*x* ∈ *A* (*f*(*x*) = *y*).
- Function $f : A \to B$ is injective/1-to-1 if $\forall x, y \in A \ (x \neq y \to f(x) \neq f(y))$ or (its contrapositive) $\forall x, y \in A \ (f(x) = f(y) \to x = y)$.
- A binary relation *R* with domain *A* and codomain *B* is a subset of *A* × *B*.

Problem 1. Let consider the following sets.

 $A = \{0, 2, 4, 6\} \quad B = \{\{0\}, \{2\}, \{4\}, \{6\}\} \quad C = A \cup \emptyset$ $D = A \cup \{\emptyset\} \quad E = \{n \in \mathbb{N} \mid n^2 \in \mathbb{N}\} \quad F = \{n^2 \in \mathbb{N} \mid n \in \mathbb{N}\}$

Answer the following questions about these sets.

- 1. What are the elements of sets *A*, *B*, *C*, and *D*?
- **2**. Which of the following are true? $\emptyset \in A$, $\emptyset \in B$, $\emptyset \in C$, $\emptyset \in D$.
- 3. Which of the following are true? $0 \in A$, $0 \in B$, $\{0\} \in A$, $\{0\} \in B$.
- 4. Which of the following are true? $0 \in E, 2 \in E, \{0\} \in E, \{2\} \in E, 0 \in F, 2 \in F, \{0\} \in F, \{2\} \in F$

- 5. Is $\{\} = \{\emptyset\}$?
- 6. Which of the following are true? $\emptyset \subseteq A$, $\emptyset \subseteq B$, $\{0\} \subseteq A$, $\{0\} \subseteq B$.
- 7. Which of the following are true? $A \subseteq E, B \subseteq E, A \subseteq F, B \subseteq F$, $E \subseteq F, F \subseteq E$.
- 8. What are the sets $B \cup C$ and $B \cup D$?
- 9. What is the set $A \cap B$?
- 10. What are the sets $B \setminus A$, $C \setminus A$ and $D \setminus A$?
- 11. Use the set builder notation to describe the set $E \setminus F$.
- 12. What are the sets $\emptyset \times B$, $\emptyset \times D$, and $\emptyset \times E$?
- 13. What are the sets $A \times B$ and $B \times A$? Are these two sets equal?
- 14. What are the sets $\mathcal{P}(\emptyset)$ and $\mathcal{P}(\{\emptyset\})$?
- 15. Which of the following are true? $\emptyset \in \mathcal{P}(A), \emptyset \subseteq \mathcal{P}(A), \{0\} \in \mathcal{P}(A), \{0\} \subseteq \mathcal{P}(A).$

Problem 2. For any sets *A*, *B*, *C*, prove that $(A \setminus C) \setminus (B \setminus C) \subseteq (A \setminus B)$.

Problem 3. Let $f : A \to B$ and $g : B \to C$. Suppose $g \circ f$ is injective.

- 1. Prove that *f* is also injective.
- 2. Is *g* necessarily injective? Justify your answer.