## Worksheet on Proofs

Benjamin Cosman, Patrick Lin and Mahesh Viswanathan
Fall 2020
Definition 1. An integer $n \in \mathbb{Z}$ is even if there is an integer $k$ such that $n=2 k$. An integer $n$ is odd if there is an integer $k$ such that $n=2 k+1$.

Definition 2. A real number $r \in \mathbb{R}$ is a rational number if there are integers $a, b \in \mathbb{Z}$ such that $b \neq 0$ and $r=\frac{a}{b}$. If $r$ is a rational number, one can assume that the integers $a, b$ are in lowest terms, i.e., they do not share any common factors.

A real number $r$ is irrational if $r$ is not rational.
Definition 3. For any real number $x \in \mathbb{R}$

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$

Definition 4. For positive real numbers $x$ and $y, \log _{x} y$ is the (unique) real number $z$ such that $x^{z}=y$.

Problem 1. Prove that for any real number $r \in \mathbb{R}$, if $2 r$ is rational then $r$ is rational.

Problem 2. Prove that for any real numbers $x, y \in \mathbb{R}$ with $x \neq 0$, if $x$ and $\frac{y+1}{3}$ are rational then $\frac{1}{x}+y$ is rational.

Problem 3. Prove that for any integer $n \in \mathbb{Z}$, if $3 n+2$ is odd then $n$ is odd.

Problem 4. Prove that for any integer $n, n \leq n^{2}$.
Problem 5. Prove the following observations.
(a) $\log _{2} 3$ is irrational.
(b) Given that $\log _{2} 3$ is irrational, $2 \log _{2} 3$ is irrational. Hint: Can you use Problem 1?
(c) There are irrational numbers $x, y$ such that $x^{y}$ is rational. Hint: Use the previous part and recall that $\sqrt{2}$ is irrational.

