Worksheet on Pigeon Hole Principle and Principle of Inclusion-Exclusion

Benjamin Cosman, Patrick Lin and Mahesh Viswanathan

Fall 2020

Lecture Summary

- The pigeon hole principle says that if $|A|>|B|$ then for any function $f: A \rightarrow B$ there are $a, b \in A$ such that $f(a)=f(b)$.
- The generalized pigeon hole principle is as follows. Let A be a set and B be an n-element set (say) $\left\{b_{1}, b_{2}, \ldots b_{n}\right\}$. Let $q_{1}, \ldots q_{n}$ be n natural numbers such that

$$
|A|>q_{1}+q_{2}+\cdots+q_{n} .
$$

For any function $f: A \rightarrow B$ there is an $i \in\{1,2, \ldots n\}$ such that $\left|\left\{a \in A \mid f(a)=b_{i}\right\}\right|>q_{i}$.

- Observe that the (basic) pigeon hole principle is a special case of the generalized pigeon hole principle, where each $q_{i}=1$.
- Another special case of the generalized pigeon hole principle is as follows. If $|A|>k|B|$ then for any function $f: A \rightarrow B$ there are $k+1$ elements $a_{1}, a_{2}, \ldots a_{k+1} \in A$ such that $f\left(a_{i}\right)=f\left(a_{j}\right)$ for any $i, j \in\{1,2, \ldots k+1\}$.
- The principle of inclusion-exclusion says that for any sets $S_{1}, S_{2}, \ldots S_{n}$,

$$
\left|\bigcup_{i=1}^{n} S_{i}\right|=\sum_{\varnothing \neq I \subseteq\{1,2, \ldots n\}}(-1)^{|I|+1}\left|\bigcap_{i \in I} S_{i}\right|
$$

- When $n=2$ or $n=3$, the principle of inclusion-exclusion specializes to the following equations.

$$
\begin{aligned}
|A \cup B|= & |A|+|B|-|A \cap B| \\
|A \cup B \cup C|= & |A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C| \\
& +|A \cap B \cap C|
\end{aligned}
$$

Problem 1. Prove that any subset $A \subseteq\{1,2, \ldots 9\}$ of size 6 , must contain a pair of numbers whose sum is 10 .

Problem 2. In a group of n people, prove that there are two people with the same number of friends.

Problem 3. For any sequence of integers $a_{1}, a_{2}, \ldots a_{n}$, prove that there is some "consecutive sum" that is divisible by n. That is, prove that there are indicies $0 \leq i<j \leq n$ such that $n \mid\left(a_{i+1}+a_{i+2}+\cdots+a_{j}\right)$.

Problem 4. Let S be the set of permutations of $\{0,1,2, \ldots 9\}$ such that either 7 and 3 , or 1 and 7 appear consecutively (in that order). For example, $0,1,2,3,4,5,6,7,8,9 \notin S$ (as neither 1.7 nor 7,3 appear), $0,2,3,4,5,6,8,9,7,1 \notin S$ (the 7,1 at the end does not count as they are in the flipped order), $0,2,3,4,5,6,8,9,1,7 \in S$ (because of the 1,7 at the end), $1,7,3,0,2,4,5,6,8,9 \in S$ (because of either 1 followed by 7 or 7 followed by 3). What is $|S|$?

Problem 5. How many ways can we place 4 distinct letters in 4 different pre-addressed envelopes so that no letter is placed the correct envelope?

