Worksheet on Logic

Benjamin Cosman, Patrick Lin and Mahesh Viswanathan Fall 2020

Definitions from the Lecture

- A proposition is a statement that can either be true (denoted T) or false (denoted F).
- Propositions can be combined using logical operators *not* (¬), *or* (∨), *and* (∧), *implies* (→), and *if and only if* (↔), to create new propositions. Truth tables for these operations is shown in Figures 1 to 5.
- Two formulas/propositions *P* and *Q* are *logically equivalent* (denoted *P* ≡ *Q*) if they have the same meaning. That is, *P* and *Q* evaluate to the same value in all rows of a truth table, or the formula *P* ↔ *Q* evaluated to T in all rows of a truth table.
- The *contrapositive* of an implication $P \rightarrow Q$ is the formula $(\neg Q) \rightarrow (\neg P)$. The contrapositive $(\neg Q) \rightarrow (\neg P)$ is logically equivalent to $P \rightarrow Q$. The *converse* of an implication $P \rightarrow Q$ is the formula $Q \rightarrow P$.
- Predicates can either be *universally* quantified (∀x P(x)) or *existentially* quantified (∃x P(x)) to create propositions from predicates. Formulas can have multiple quantifiers and the order in which they appear can influence their meaning.
- A *domain of discourse* identifies the set over which predicate variables take values and the meaning of predicates. It plays an important role in determining the truth of propositions.

Р	$\neg P$
F	Т
Т	F

Figure 1: Truth table for $\neg P$

Problem 1. In which time zones are other students in your breakout room?

Problem 2. Your class has a textbook and a final exam. Let P, Q, and

Figure 2: Truth table for $P \lor Q$		Figure 3:	Figure 3: Truth table for $P \wedge Q$				
	P	Q	$P \lor Q$		P	Q	$P \wedge Q$
	F	F	F		F	F	F
	F	Т	Т		F	Т	F
	Т	F	Т		Т	F	F
	Т	Т	Т		Т	Т	Т
Figure 4: Truth table for $P \rightarrow Q$			for $P \to Q$	Figure 5: 5	$Iruth table for P \leftrightarrow Q$		
	Р	Q	$P \rightarrow Q$		Р	Q	$P \leftrightarrow Q$
	F	F	Т	-	F	F	Т
	F	Т	Т		F	Т	F
	Т	F	F		Т	F	F

R be the following propositions.

- *P* : You get an A on the final exam.
- Q: You do every exercise in the book.
- *R* : You get an A in the class.

Translate the following assertions into propositional formulas using *P*, *Q*, *R* and the logical operators \land , \neg , \rightarrow .

- 1. You get an A in the class, but you do not do every exercise in the book.
- 2. You get an A on the final, you do every exercise in the book, and you get an A in the class.
- 3. To get an A in the class, it is necessary for you to get an A on the final.
- 4. You get an A on the final, but you don't do every exercise in the book; nevertheless, you get an A in this class.

Problem 3. Consider the following statement

If m + n is even then either m and n are both even, or m and n are both odd.

Define the following propositions: *P* to be "m + n is even"; E_m to be "m is even"; E_n to be "n is even"; O_m to be "m is odd"; and O_n to be "n is odd".

- 1. Rewrite the statement using logical operators, and the propositions *P*, *E*_{*n*}, *E*_{*n*}, *O*_{*n*}, *O*_{*n*}.
- 2. What is the negation of an implication $R \rightarrow S$, where R and S are propositions?

- 3. Negate the formula obtained in part 1, moving all negations (e.g. "not") onto individual propositions. *Hint:* Use the observation in part 2 and then use de Morgan's laws to push the negations inside.
- 4. Translate the formula obtained in part 3 into English.
- 5. Construct the contrapositive of the given statement (in english).
- 6. Construct the converse of the given statement (in english).

Problem 4. For each of the pairs below determine if they are equivalent or not. To prove that a pair of formulas is not equivalent, provide a truth assignment under which the two formulas evaluate to different values. To prove that a pair of formulas is equivalent, construct a truth table showing that the formulas evaluate to the same value in all cases.

- 1. $P \rightarrow (Q \rightarrow R)$ and $(P \rightarrow Q) \rightarrow R$.
- 2. $P \lor (Q \land R)$ and $(P \lor Q) \land (P \lor R)$

Problem 5. Consider a new logical operator \oplus whose truth table is given as follows.

Р	Q	$P \oplus Q$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	F

Express $P \oplus Q$ in an equivalent form using only \neg , \land , and \lor .