Worksheet on Cardinality

Benjamin Cosman, Patrick Lin and Mahesh Viswanathan
Fall 2020

Definitions from the Lecture

- The cardinality of a finite set A (denoted $|A|$) is the number of elements in set A.
- The cardinality of the Cartesian product of finite sets is the product of the cardinalities of the individual sets, i.e., $\left|A_{1} \times A_{2} \times \cdots \times A_{k}\right|=n_{1} n_{2} \cdots n_{k}$, where $\left|A_{i}\right|=n_{i}$ for $i \in\{1,2, \ldots k\}$.
- For finite sets A, B, if there is a surjective function $f: A \rightarrow$ B then $|B| \leq|A|$, and if there is a bijective function $f: A \rightarrow$ B then $|A|=|B|$.
- For any finite set $A,|\mathcal{P}(A)|=2^{|A|}$.
- Cantor's Definition: For infinite sets A, B, we say $|B| \leq|A|$ if there is a surjective (onto) function $f: A \rightarrow B$, and we say $|A|=|B|$ if there is a bijective function $f: A \rightarrow B$.
- The following properties hold for Cantor's definition. For any set $A,|A|=|A|$. If $B \subseteq A$ then $|B| \leq|A|$. Finally, for infinite sets A, B, C, if $|A|=|B|$ and $|B|=|C|$ then $|A|=|C|$, and if $|A| \leq|B|$ and $|B| \leq|C|$ then $|A| \leq|C|$.
- Cantor-Schröder-Bernstein Theorem: For any infinite sets A and B, if $|A| \leq|B|$ and $|B| \leq|A|$ then $|A|=|B|$.
- For infinite sets A and B, if there is an injective function f : $A \rightarrow B$ then there is a surjective function $g: B \rightarrow A$. Thus, if there is an injective function $f: A \rightarrow B$ then $|A| \leq|B|$.
- A set S is countable if either S is finite or $|S|=|\mathbb{N}|$.
- The sets $\mathbb{E}(=\{2 n \mid n \in \mathbb{N}\}), \mathbb{N}, \mathbb{Z}$, and $\mathbb{N} \times \mathbb{N}$ are all countable.
- $\mathcal{P}(\mathbb{N})$ is not countable.

Problem 1. For each of the following pairs of sets A, B, determine if there is a function $f: A \rightarrow B$ that is surjective but not bijective and if there is a function $g: A \rightarrow B$ that is bijective.
(a) $A=\{0,1,2,3,4,5,6,7,8,9\}$ and $B=\{0,2,4,6,8\}$.
(b) $A=\mathbb{N}$ and $B=\mathbb{E}=\{2 n \mid n \in \mathbb{N}\}$.

Problem 2. Consider the function sgn : $\mathbb{Z} \rightarrow \mathbb{N}$ that maps nonnegative numbers to the even natural numbers and the negative numbers to the odd numbers as follows.

$$
\begin{aligned}
0 & \mapsto 0 \\
-1 & \mapsto 1 \\
1 & \mapsto 2 \\
-2 & \mapsto 3 \\
2 & \mapsto 4
\end{aligned}
$$

(a) Give a precise mathematical definition of sgn.
(b) Prove that sgn is bijective.

Problem 3. Prove that for any sets A and B with $A \neq \varnothing$, if there is an injective function $f: A \rightarrow B$ then there is a surjective function $g: B \rightarrow A$.

Problem 4. Recall that $\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}\right.$ and $\left.b \neq 0\right\}$ is the set of rational numbers. Prove that $|\mathbb{Q}|=|\mathbb{N}|$, i.e., Q is countable. Hint: Use the Cantor-Schröder-Bernstein theorem and Problem 3.

Problem 5. Cantor's diagonalization argument (see lecture notes) can be used to prove that $|\mathbb{N}| \neq|\mathcal{P}(\mathbb{N})|$. Use the same proof template to prove that for any infinite set $A,|A| \neq|\mathcal{P}(A)|$.

