Worksheet on Cardinality

Benjamin Cosman, Patrick Lin and Mahesh Viswanathan

Fall 2020

Definitions from the Lecture

- The cardinality of a finite set *A* (denoted |*A*|) is the number of elements in set *A*.
- The cardinality of the Cartesian product of finite sets is the product of the cardinalities of the individual sets, i.e., $|A_1 \times A_2 \times \cdots \times A_k| = n_1 n_2 \cdots n_k$, where $|A_i| = n_i$ for $i \in \{1, 2, \dots k\}$.
- For finite sets *A*, *B*, if there is a surjective function $f : A \rightarrow B$ then $|B| \leq |A|$, and if there is a bijective function $f : A \rightarrow B$ then |A| = |B|.
- For any finite set A, $|\mathcal{P}(A)| = 2^{|A|}$.
- *Cantor's Definition:* For infinite sets *A*, *B*, we say |*B*| ≤ |*A*| if there is a surjective (onto) function *f* : *A* → *B*, and we say |*A*| = |*B*| if there is a bijective function *f* : *A* → *B*.
- The following properties hold for Cantor's definition. For any set A, |A| = |A|. If $B \subseteq A$ then $|B| \leq |A|$. Finally, for infinite sets A, B, C, if |A| = |B| and |B| = |C| then |A| = |C|, and if $|A| \leq |B|$ and $|B| \leq |C|$ then $|A| \leq |C|$.
- *Cantor-Schröder-Bernstein Theorem:* For any infinite sets *A* and *B*, if |*A*| ≤ |*B*| and |*B*| ≤ |*A*| then |*A*| = |*B*|.
- For infinite sets *A* and *B*, if there is an injective function *f* :
 A → *B* then there is a surjective function *g* : *B* → *A*. Thus, if there is an injective function *f* : *A* → *B* then |*A*| ≤ |*B*|.
- A set *S* is *countable* if either *S* is finite or $|S| = |\mathbb{N}|$.
- The sets \mathbb{E} (= {2 $n \mid n \in \mathbb{N}$ }), \mathbb{N} , \mathbb{Z} , and $\mathbb{N} \times \mathbb{N}$ are all countable.
- $\mathcal{P}(\mathbb{N})$ is not countable.

Problem 1. For each of the following pairs of sets *A*, *B*, determine if there is a function $f : A \rightarrow B$ that is surjective but not bijective and if there is a function $g : A \rightarrow B$ that is bijective.

(a) $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and $B = \{0, 2, 4, 6, 8\}$.

(b) $A = \mathbb{N}$ and $B = \mathbb{E} = \{2n \mid n \in \mathbb{N}\}.$

Problem 2. Consider the function sgn : $\mathbb{Z} \to \mathbb{N}$ that maps non-negative numbers to the even natural numbers and the negative numbers to the odd numbers as follows.

```
\begin{array}{c} 0 \mapsto 0 \\ -1 \mapsto 1 \\ 1 \mapsto 2 \\ -2 \mapsto 3 \\ 2 \mapsto 4 \\ \vdots \end{array}
```

(a) Give a precise mathematical definition of sgn.

(b) Prove that sgn is bijective.

Problem 3. Prove that for any sets *A* and *B* with $A \neq \emptyset$, if there is an injective function $f : A \rightarrow B$ then there is a surjective function $g : B \rightarrow A$.

Problem 4. Recall that $\mathbb{Q} = \{\frac{a}{b} \mid a, b \in \mathbb{Z} \text{ and } b \neq 0\}$ is the set of rational numbers. Prove that $|\mathbb{Q}| = |\mathbb{N}|$, i.e., \mathbb{Q} is countable. *Hint:* Use the Cantor-Schröder-Bernstein theorem and Problem 3.

Problem 5. Cantor's diagonalization argument (see lecture notes) can be used to prove that $|\mathbb{N}| \neq |\mathcal{P}(\mathbb{N})|$. Use the same proof template to prove that for *any* infinite set A, $|A| \neq |\mathcal{P}(A)|$.