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TAKE-AWAYS

• A set is an unordered collection of objects, typically listed
without repetition.

• ∅ is the emptyset, Z the set of integers, N the set of nat-
ural numbers (or non-negative integers), R the set of real
numbers, and Q the set of rational numbers.

• Elements of a set uniquely determine the set. x ∈ S denotes
that x is an element of set S.

• R ⊆ S denotes that R is a subset of S or that every element
in R is also an element of S. R = S if R ⊆ S and S ⊆ R.

• For sets R and S, R ∪ S denotes their union, R ∩ S denotes
their intersection, R \ S denotes their difference, and R
denotes the complement of R (with respect to a universe).

• The Cartesian product of sets R and S is the set of all or-
dered pairs of the form (r, s) where r ∈ R and s ∈ S.

• The power set of a set S is the set consisting all subsets of S.

• For a function f : A → B, A is the domain, and B is the
codomain of function f . The range of function f is the set
{y ∈ B | ∃x ∈ A f (x) = y}.

• A function f is surjective/onto if codom( f ) = rng( f ).

• A function f is injective/1-to-1 if distinct elements are
mapped to distinct elements.

• A function f is bijective if it is both injective and surjective.

• Binary relations, with domain A and co-domain B, are
subsets of A× B.
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Sets

A set is an unordered collection of objects, typically listed with-
out repetition between braces. Unordered means that the way the
elements of a set are listed does not matter. For example, the set
{0, 2, 4, 6} is the same as the set {2, 0, 6, 4}. Elements of a set are also
listed only once. So the set {0, 0}, is the same as the set {0}.

Notation. There are some important sets and their notation that you
should be comfortable with.

• {} and ∅ denote the empty set which is the unique set that contains
no elements.

• Z = {. . .− 2,−1, 0, 1, 2, . . .} denotes the set of all integers.

• N = {0, 1, 2, . . .} denotes the set of natural numbers. Notice that in
this course, and typically in computer science/mathematics, this
set includes the number 0. If you are confused by this, you may
want to read and remember N as Non-negative integers.

• R denotes the set of all real numbers.

Example 1. Sets can contain any elements as members, including
numbers, letters, symbols, or even other sets. Here are some exam-
ples.

A = {0, 2, 4, 6} P = {B,C,D,E,F, J,K,P,Q,R,S,T,V}
B = {{0}, {2}, {4}, {6}} C = {∅, {∅}, {∅, {∅}}}

The set P above is a set of names of programming languages. How
many of them did you know?

Since the elements in a set are unordered and do not repeat, a set
is completely determined by its members. The “x ∈ S” means that x
is a member of set S. An element of a set is something that is written
between commas after erasing the outermost braces. Let us look at
some examples.

Example 2. Let us look at the members of some sets introduced in
Example 1. The elements of set A = {0, 2, 4, 6} are 0, 2, 4, and 6. On
the other hand, the elements of set B = {{0}, {2}, {4}, {6}} are {0},
{2}, {4}, and {6}. Notice, that 0 6∈ B but {0} ∈ B. Similarly, 0 ∈ A
but {0} 6∈ A.

The members of set C = {∅, {∅}, {∅, {∅}}} are ∅, {∅}, and
{∅, {∅}}. Observe that ∅ is not a member of A or B. But ∅ ∈ C.
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Definition 3 (Containment and Equality). A set A is a subset of /contained
in B, denoted A ⊆ B, if every element of A is also an element of B.
That is, ∀x (x ∈ A→ x ∈ B).

Two sets A and B are equal, denoted A = B, if every element of
A is an element of B, and vice versa. That is, A ⊆ B and B ⊆ A.
Another way to say this is that ∀x (x ∈ A↔ x ∈ B).

Let us look at some examples.

Example 4. Let us consider the sets ∅, N, A = {0, 2, 4, 6}, B =

{{0}, {2}, {4}, {6}}.
Observe that ∅ ⊆ A. Let us see why this is the case. We need to

prove that any element belonging to ∅ also belongs to A. However,
there are no elements in ∅, and so this property holds vaccuously.
Similar reasoning allows one to show that ∅ ⊆ B and ∅ ⊆N.

Next, we can also show that N ⊆ N. This observation also fol-
lows from the definition of set containment — every element that
belongs to N also (by definition) belongs to N; hence, N ⊆ N. We
can similarly, show that A ⊆ A, B ⊆ B, and ∅ ⊆ ∅.

Finally, observe that A 6⊆ B. This can be seen by observing that
0 ∈ A, but 0 6∈ B. Similarly, B 6⊆ A as {0} ∈ B but {0} 6∈ A.

The observations made in Example 4 can be encapsulated in a
couple of simple propositions.

Proposition 5. For any set S, ∅ ⊆ S.

Proof. Let S be an arbitrary set. To show that ∅ ⊆ S, we need to
prove ∀x (x ∈ ∅ → x ∈ S). But since “x ∈ ∅” is not true for any
element x, the implication (x ∈ ∅ → x ∈ S) holds vaccuously, for any
x. Thus, we have proved the implication, and therefore, ∅ ⊆ S.

Proposition 6. For any set S, S ⊆ S.

Proof. Let S be an arbitrary set. To show that S ⊆ S, we need to prove
∀x (x ∈ S → x ∈ S). We will prove this using a direct proof. Let x
be an arbitrary element such that x ∈ S. This means (trivially) that
x ∈ S, and hence the implication holds. Therefore, S ⊆ S.

One of the most important ways to define a subset of a given uni-
versal set, is using the set builder notation. Many sets are defined in
this manner.

Definition 7 (Set Builder). The notation {x ∈ S | P(x)} defines the
subset of S consisting of elements that satisfy the predicate P.

Let us look at some examples.
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Example 8. The set of even integers can be defined as follows.

E = {n ∈ Z | n is even} = {n ∈ Z | ∃m ∈ Z n = 2m}

The set Q = {r ∈ R | ∃m, n ∈ Z (n 6= 0 ∧ r = m
n )} defines the

set of real numbers that can be written as the ratio of two integers,
where the denominator is non-zero. In other words, Q is the set of all
rational numbers.

Set Operations

Sets can combined in different ways to create new sets. We will
describe some standard set operations in this section. We begin with
the Boolean operations of union, intersection, difference, and comple-
ment.

Definition 9. Let R and S be arbitrary sets. Union (R ∪ S), intersec-
tion (R ∩ S), difference (R \ D), and complementation are defined as
follows.

R ∪ S = {x | x ∈ R or x ∈ S} R ∩ S = {x | x ∈ R and x ∈ S}
R \ S = {x ∈ R | x 6∈ S}

Typically there is a universe/domain of discourse that all sets in a
discussion are subsets of. This universe is often implicitly known in
the context. In such a case, the complement of set R (with respect to
universe U) is given as R = U \ R.

Boolean operations on sets are best understood through what is
often called a Venn diagram, that shows logical relationships between
different sets. Sets are often represented as circles with their spatial
arrangement mimicing their relationships. The universe is typically
shown as a rectangle enclosing all the sets. Union and intersection of
sets R and S can be pictorial shown in a Venn diagram as the shaded
regions in Figure 1 and Figure 2, respectively.

Figure 1: R ∪ S

R S

Figure 2: R ∩ S

R S

Similarly, the difference between R and S, and their complement
are shown in Figure 3 and Figure 4.

Let us look at some examples.
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Figure 3: R \ S

R S

Figure 4: R

R S

Example 10. Let us recall the sets A = {0, 2, 4, 6}, B = {{0}, {2}, {4}, {6}},
from Example 1. Observe that A ∪ B = {0, 2, 4, 6, {0}, {2}, {4}, {6}}
but A ∩ B = ∅. Further, A ∪ ∅ = A, A ∩ ∅ = ∅, and A \ B = A. On
the other hand, B \ A = B. Thus, in general, for sets R and S, R \ S is
not necessarily equal to S \ R.

Example 10 makes a couple of observations that hold for any sets
(not just A and B of the example).

Proposition 11. For any set S, S ∪∅ = S and S ∩∅ = ∅.

The set operations of union, intersection, and complementation,
satisfy many of the properties that ∨, ∧, and ¬ satisfy in logic. The
proof that they satisfy these properties often exploits the same prop-
erties of the logical operators. Let us look at one example to illustrate
this idea.

Proposition 12. For any sets X, Y, Z, X ∩ (Y ∪ Z) = (X ∩Y) ∪ (X ∩ Z).

Proof. Let us fix some arbitrary sets X, Y, and Z.
Recall that proving the equality of two sets R and S involves ar-

guing that element of the first set is also an element of the second
set and vice versa. As in the proof of any if and only if statement,
there are two implications to be proved, and we need to do that in set
equality proofs. In this case each direction can be proved by a direct
proof.

X ∩ (Y ∪ Z) ⊆ (X ∩Y) ∪ (X ∩ Z): We need to prove that for any x, if
x ∈ X ∩ (Y ∪ Z) then x ∈ (X ∩ Y) ∪ (X ∩ Z). We will use a direct
proof to establish this implication.

Let x be an arbitrary element and assume that x ∈ X ∩ (Y ∪ Z).
We use the definition of the set operations and logical reasoning to
observe the following sequence of steps.

x ∈ X ∩ (Y ∪ Z) → (x ∈ X) ∧ (x ∈ Y ∪ Z)
→ (x ∈ X) ∧ ((x ∈ Y) ∨ (x ∈ Z))
→ ((x ∈ X) ∧ (x ∈ Y)) ∨ ((x ∈ X) ∧ (x ∈ Z))
→ (x ∈ X ∩Y) ∨ (x ∈ X ∩ Z)
→ (x ∈ (X ∩Y) ∪ (X ∩ Z))
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(X ∩Y) ∪ (X ∩ Z) ⊆ X ∩ (Y ∪ Z): This can also be proved by a direct
proof. The proof is just the reverse of the sequence of steps used in
the argument for the other direction. We skip repeating the steps,
and leave it to the reader as an exercise.

In proofs like the one above where the proof in each direction
is the same set of steps but in reverse order, it is often written as
follows to emphasize that each step in the argument can be reversed
to get a logical sound sequence of steps.

x ∈ X ∩ (Y ∪ Z) ↔ (x ∈ X) ∧ (x ∈ Y ∩ Z)
↔ (x ∈ X) ∧ ((x ∈ Y) ∨ (x ∈ Z))
↔ ((x ∈ X) ∧ (x ∈ Y)) ∨ ((x ∈ X) ∧ (x ∈ Z))
↔ (x ∈ X ∩Y) ∨ (x ∈ X ∩ Z)
↔ (x ∈ (X ∩Y) ∪ (X ∩ Z))

The next important set operation is that of Cartesian products.

Definition 13 (Cartesian Products). The Cartesian product of two sets
R and S (denoted R× S) consists of the set of all ordered pairs (r, s)
where r ∈ R and s ∈ S. Using the set builder notation, this is written
as shown.

R× S = {(r, s) | r ∈ R and s ∈ S}

More generally, for sets A1, A2, . . . An,

A1 × A2 × · · · × An = {(a1, a2, . . . , an) | ai ∈ A, for all i}.

Let us look at some examples.

Example 14. Consider R = {1, 2, 3} and S = {a, b, c}. Then R× S =

{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c), (3, a), (3, b), (3, c)}.
Let us look at another example. Consider U = {1} and V = {a}.

Then U × V = {(1, a)}. On the other hand, V × U = {(a, 1)}.
Therefore, U × V 6= V × U. In general, Cartesian product is not a
commutative operation.

Definition 15 (Power Set). The power set of a set S, denoted P(S), is
the set consisting of every subset of S. In other words,

P(S) = {A | A ⊆ S}.

Example 16. P({1, 2}) = {∅, {1}, {2}, {1, 2}}. Note that from Propo-
sition 5, we can conclude that for any set S, ∅ ∈ P(S) and S ∈ P(S).
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Figure 5: Pictorial representation of the function g(0) = 1, g(1) = 2, and g(2) = 2.

Functions

A function f : A → B assigns an element of B to each element of
A. A is the domain, and B is the codomain of the function f . Given a
function f , we will use dom( f ) to denote the domain, and codom( f )
to denote the codomain. On the other hand, the range of the function
f (denoted rng( f )) is the set

rng( f ) = {b ∈ B | ∃a ∈ A f (a) = b}.

Example 17. Functions can be described in multiple ways. They can
be given by explicitly listing the mapping. For example, consider the
function g : {0, 1, 2} → {0, 1, 2} given by

g(0) = 1 g(1) = 2 g(2) = 2

Sometimes it is convenient to represent the function pictorially, where
arrows from the domain to the co-domain describe the mapping.
For example, the function g described above is shown pictorially in
Figure 5. Observe that dom(g) = codom(g) = {0, 1, 2}. On the other
hand, rng(g) = {1, 2}; pictorially, these are all the elements that have
an incoming arrow.

Most of the time it is convenient to describe the function mathe-
matically. For example, consider the function dbl : N → N given by
dbl(n) = 2n. The domain, codomain, and range of dbl are as follows:
dom(dbl) = codom(dbl) = N, and rng(dbl) = {2n | n ∈N}.

Definition 18 (Injective, Surjective, and Bijective Functions). Consider
a function f : A→ B.

f is said to be surjective or onto if rng( f ) = codom( f ). That is

∀y ∈ B∃x ∈ A f (x) = y.
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Figure 6: Function f given by: f (0) = 1, f (1) = 2 and f (2) = 0.

f is said to be 1-to-1 or injective if distinct elements in A get mapped
to distinct elements in B. That is

∀x ∈ A∀y ∈ A (x 6= y→ f (x) 6= f (y)).

f is said to be 1-to-1 and onto or bijective if it is both 1-to-1 and
onto.

Let us look at some examples.

Example 19. The requirements of onto and 1-to-1, can be understood
pictorially as follows. Every element of the codomain has at least one
incoming arrow when the function is onto. On the other hand, every
element of the codomain as at most one incoming arrow, when the
function is 1-to-1. Consider functions f : {0, 1, 2} → {0, 1, 2} and
g : {0, 1, 2} → {0, 1, 2} defined as

f (0) = 1 f (1) = 2 f (2) = 0
g(0) = 1 g(1) = 2 g(2) = 2

Function g is shown in Figure 5, while function f is shown in Fig-
ure 6. The function f is both 1-to-1 and onto. On the other hand g is
neither 1-to-1 nor onto — g is not onto because 0 6∈ rng(g) and it is
not 1-to-1 because g(1) = g(2). Since f is both 1-to-1 and onto, it is
bijective. On the other hand, g is not bijective.

When proving whether a function is onto or 1-to-1, we use the
formal definition of these properties. Notice that injectiveness or
1-to-1ness requires one to prove an implication. Often the most con-
venient way to establish this is by looking at its contrapositive. Let us
look at a couple of examples that state some useful properties about
functions. Before looking at these properties, let us define what it
means to compose two functions.

Definition 20. For functions f : A → B and g : B → C, their
composition g ◦ f is a function A→ C defined as

g ◦ f (a) = g( f (a)).
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Proposition 21. For functions f : A → B and g : B → C if f and g are
onto/surjective then g ◦ f is onto/surjective.

Proof. Let f and g be arbitrary surjective functions as in the state-
ment. We need to prove that for every y ∈ C there is some x ∈ A,
such that g ◦ f (x) = y.

Let y be an arbitrary element of C. Since g is surjective, there is z ∈
B such that g(z) = y. Similarly, since f is surjective, there is x ∈ A
such that f (x) = z. Observe that g ◦ f (x) = g( f (x)) = g(z) = y.
Thus, g ◦ f is surjective.

Proposition 22. For functions f : A → B and g : B → C if f and g are
1-to-1/injective then g ◦ f is 1-to-1/injective.

Proof. Let f and g be arbitrary injective functions as in the statement.
We need to prove that for any x, y ∈ A, if x 6= y then g ◦ f (x) 6=
g ◦ f (y). The contrapositive of this statement is

∀x, y ∈ A (g ◦ f (x) = g ◦ f (y)→ x = y).

We will prove this contrapositive statement. Most proofs showing
functions to be injective rely on proving the contrapositive of the
definition.

As in any direct proof by contraposition, assume x, y are arbitrary
elements of A such that g ◦ f (x) = g ◦ f (y). Observe that

g ◦ f (x) = g( f (x)) = g( f (y)) = g ◦ f (y).

Since g is injective and g( f (x)) = g( f (y)), the arguments to g,
namely f (x) and f (y), must be equal. That is, f (x) = f (y). Simi-
larly, since f is injective, we can conclude x = y. This proves that
g ◦ f is injective.

Relations

A k-ary relation R is a set of k-tuples, i.e., R ⊆ A1 × A2 × · · · × Ak.
Most of the time, we care about binary relations, which are of the
form R ⊆ A × B. For such binary relations, A is called the domain,
and B is called the codomain.

Notation. The following are equivalent ways to say that a and b are
related by binary relation R: (a, b) ∈ R, aRb, and R(a, b).

Binary relations are a generalization of functions. Every function
f : A → B has an binary relation associated with it, called the graph
of function f , denoted graph( f ), that uniquely defines it. Formally,
graph( f ) ⊆ A × B such that graph( f ) = {(x, f (x)) | x ∈ A}. For
example, for the function g (Example 17 and Figure 5), graph(g) =

{(0, 1), (1, 2), (2, 2)}.
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