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TAKE-AWAYS

• The pigeon hole principle says that if |A| > |B| then for any
function f : A→ B there are a, b ∈ A such that f (a) = f (b).

• The generalized pigeon hole principle is as follows. Let A
be a set and B be an n-element set (say) {b1, b2, . . . bn}. Let
q1, . . . qn be n natural numbers such that

|A| > q1 + q2 + · · ·+ qn.

For any function f : A → B there is an i ∈ {1, 2, . . . n} such
that |{a ∈ A | f (a) = bi}| > qi.

• Observe that the (basic) pigeon hole principle is a special
case of the generalized pigeon hole principle, where each
qi = 1.

• Another special case of the generalized pigeon hole prin-
ciple is as follows. If |A| > k|B| then for any function
f : A → B there are k + 1 elements a1, a2, . . . ak+1 ∈ A such
that f (ai) = f (aj) for any i, j ∈ {1, 2, . . . k + 1}.

• The principle of inclusion-exclusion says that for any sets
S1, S2, . . . Sn,∣∣∣∣∣ n⋃

i=1

Si

∣∣∣∣∣ = ∑
∅ 6=I⊆{1,2,...n}

(−1)|I|+1

∣∣∣∣∣⋂
i∈I

Si

∣∣∣∣∣
• When n = 2 or n = 3, the principle of inclusion-exclusion

specializes to the following equations.

|A ∪ B| = |A|+ |B| − |A ∩ B|
|A ∪ B ∪ C| = |A|+ |B|+ |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|

+|A ∩ B ∩ C|
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Pigeon Hole Principle

The pigeon hole principle is a simple, yet extremely powerful
proof principle. Informally it says that if n + 1 or more pigeons are
placed in n holes, then some hole must have at least 2 pigeons. This
is also known as the Dirichlet’s drawer principle or Dirichlet’s box
principle after the mathematician Peter Gustav Dirichlet. Formally,
we could restate it as follows.

Proposition 1 (Pigeon Hole Principle). If A and B are sets such that
|A| > |B| then for any function f : A → B there are a, b ∈ A such that
f (a) = f (b).

Proof. Observe that we have previously established that if f : A → B
is injective then |A| ≤ |B|. The contrapositive of this is that if |A| >
|B| then a function f : A → B is not injective. Or there must be two
elements a, b ∈ A such that f (a) = f (b).

The pigeon hole principle is used to establish many different re-
sults. For example, suppose you have a drawer with orange and blue
colored socks, each of which can be worn on either foot, and you are
pulling socks from the drawer without looking. How many socks do
you need to pull before you are guaranteed to get a pair of the same
color? Taking each sock to be a pigeon and the colors to be holes into
which they are assigned, the pigeon hole principle guarantees that
in any set of 3 socks there is a pair of the same color. While this is
an extremely straightforward application of the pigeon hole prin-
ciple, there are many non-trivial observations that follow from this
principle.

Proposition 2. In any set S ⊆ Z with |S| = n, there are a, b ∈ S such that
a− b is a multiple of n− 1, i.e., (n− 1)|(a− b).

Before proving the proposition, let us look at an example to under-
stand what it is saying. Consider an example set of integers S that is
(say) {4, 3, 1, 7, 8}. There are two elements, namely 4 and 8, such that
4− 8 = −4 is a multiple of |S| − 1 = 5− 1 = 4.

Proof of Proposition 2. Consider the function r : S → {0, 1, 2, . . . n− 2}
where r(a) = rem(a, n− 1), i.e., r maps an number a to the remainder
when a is divided by n− 1. Since |S| = n > n− 1 = |{0, 1, 2 . . . n−
2}|, by the pigeon hole principle, there are a, b ∈ S such that r(a) =

r(b). That is, rem(a, n− 1) = rem(b, n− 1). Therefore, a ≡ b mod (n−
1) or (n− 1)|(a− b).

Problem 1. A chess player trains for a championship by playing
practice games over 77 days. She plays at least one game on any day,
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and plays a total of at most 132 games. Prove that no matter what her
schedule of games looks like, there is a period of consecutive days in
which she plays exactly 21 games.

The above statement is a surprising observation. It says that even
though we have no idea of what the chess player’s match schedule
looks like, there is a period of time when she plays exactly 21 games!
This illustrates the power of the pigeon hole principle which can
be used to prove statements like this, that establish the existence of
pattern in an arbitrary situation.

Proof. Take ai to denote the total number of games played in the first
i days. Given that the chess player plays at least one game each day,
and plays no more than 132 games over the 77 days, we say that

1 ≤ a1 < a2 < · · · < a77 ≤ 132.

Let us define bi to be ai + 21. Using the previous sequence of inequal-
ities, we can say that

22 ≤ b1 = a1 + 21 < b2 = a2 + 21 < · · · < b77 = a77 + 21 ≤ 153.

Observe that we have 154 numbers in the sequence a1, a2, . . . a77,
b1, b2, . . . b77. Each of these numbers takes a value between 1 and
153. Thus, by the pigeon hole principle, there are two numbers in
this sequence that are the same. Observe that none of the ais are
equal, and none of the bis are equal. Thus, it must be the case that
there are j, k such that aj = bk = ak + 21. Note that k must be less
than i since the ais form a strictly increasing sequence of numbers.
Therefore, the chess player plays exactly 21 games in total on the
days k + 1, k + 2, . . . j.

Theorem 3 (Chinese Remainder Theorem). Let m, n ∈ N be coprime,
i.e., gcd(m, n) = 1. Let a, b be any integers such that 0 ≤ a < m and
0 ≤ b < n. Then there is x ∈ N such that x < mn, rem(x, m) = a and
rem(x, n) = b.

Before presenting the proof of this important result in number
theory, let us look at an example to understand what it is saying.
Consider coprime numbers 6 (m) and 11 (n). Suppose we take a to
be 5 and b to be 10, the theorem says that there is a number x that
leaves a remainder of 5 when divided by 6 and a remainder of 10
when divided by 11. What is such a number? 65; rem(65, 6) = 5 and
rem(65, 11) = 10.

Proof of Theorem 3. Consider the set of n numbers S = {a + im | 0 ≤
i < n} = {a, a + m, a + 2m, . . . a + (n− 1)m}. Since a < m, we have
a + (n− 1)m < nm; thus, every element of S is < mn. We will show
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that one of the numbers in S is our desired number x, i.e., it leaves
a remainder of a when divided by m and a remainder of b when
divided by n.

First observe that for any i, rem(a + im, m) = a. Thus, every num-
ber in S leaves a remainder of a when divided by m. All that is left
to show is that one of the numbers in S leaves a remainder of b when
divided by n.

Suppose (for contradiction), for all ` ∈ S, rem(`, n) 6= b. Consider
the function r : S → {0, 1, 2, . . . n − 1} defined as r(`) = rem(`, n).
Since (by assumption) b 6∈ rng(r), |rng(r)| ≤ n − 1. Observe that
|S| = n. Thus, by the pigeon hole principle, there are i < j such that
r(a + im) = rem(a + im, n) = rem(a + jm, n) = r(a + jm). This means
that a + jm ≡ a + im mod n or n|((a + jm)− (a + im)). Simplifying
we have, n|(j − i)m. Since m and n are coprime, it must be the case
that n|(j− i). But this is impossible since 0 < j− i < n.

Applications of the Chinese Remainder Theorem

The Chinese Remainder theorem is an important result in
number theory that has applications in computer science. Our
statement of the theorem is weaker than what the proof en-
tails. One can observe that the proof shows that, for m, n, a, b
as given in the theorem, there is a unique number x < mn such
that x ≡ a mod m and x ≡ b mod n. Therefore, one way to
interpret the Chinese Remainder Theorem is that it says that
the (large) number x can be represented by the pair of (small)
numbers (a, b). Many number theoretic algorithms exploit
this interpretation and use the “chinese remainder theorem
representation” of numbers to compute large numbers.

The pigeon hole principle can be generalized as follows.

Proposition 4 (Generalized Pigeon Hole Principle). Let A be a set and
B be an n-element set (say) {b1, b2, . . . bn}. Let q1, . . . qn ∈ N be such that
|A| > q1 + q2 + · · · + qn. For any function f : A → B, there is an
i ∈ {1, 2, . . . n} such that |{a ∈ A | f (a) = bi}| > qi.

Proof. For an element b ∈ B, let us define f−1(b) = {a ∈ A | f (a) =

b}. Observe that since each element gets mapped to exactly one value
in B, we have A ⊆ ∪n

i=1 f−1(bi) and for any j 6= k, f−1(bj) ∩ f−1(bk) =

∅.
We need to show that for some i, | f−1(bi)| > qi. Suppose (for

contradiction) this is not true, i.e., for every i, | f−1(bi)| ≤ qi. Based on
the observation in the previous paragraph, and using the sum rule,
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we have

|A| ≤ | ∪n
i=1 f−1(bi)| =

n

∑
i=1
| f−1(bi)| ≤

n

∑
i=1

qi.

But this contradicts the assumption that |A| > ∑n
i=1 qi.

Observe that the (simple) pigeon hole principle (Proposition 1) fol-
lows from Proposition 4 — simply take each qi = 1. There is another
special case of Proposition 4 that arises in many situations. If we take
each qi to be some (fixed) number k, we see that Proposition 4 says
that if the cardinality of the domain of a function f is greater than
k times the cardinality of its co-domain, then there are at least k + 1
elements that are mapped to the same value by f . Since this form is
very useful, we state it explicitly.

Proposition 5. If |A| > k|B| then for any function f : A → B there
are k + 1 elements a1, a2, . . . ak+1 ∈ A such that f (ai) = f (aj) for any
i, j ∈ {1, 2, . . . k + 1}.

We conclude our discussion on the pigeon hole principle by look-
ing at some applications of the generalized pigeon hole principle.

Example 6. Suppose we draw cards from a standard 52 card deck.
How many cards must we draw to ensure that we get 3 cards of one
suit? How many cards must we draw if we instead want 3 cards of
the hearts suit? The answer to these two questions is different and
can be computed using the generalized pigeon hole principle.

Let us consider the first question. Consider the function that maps
each drawn card to its suit. The co-domain of this function has 4

elements. Taking each qi to be 2 in Proposition 4, we see that if we
draw more than 2× 4 = 8 cards then we can ensure that there are 3

cards in one suit. Thus, we need to draw at least 9 cards.
To answer the second question, once again consider the function

that maps each drawn card to its suit. Since we may draw all 13 of
the spades, all 13 of the diamonds, all 13 of the clubs, before we get
the 3 hearts cards, we need to draw 13 + 13 + 13 + 3 = 42 cards to
ensure that we get 3 cards of the hearts suit.

Problem 2. Two people will be said to be acquaintances if they have
met before, and they will be said to be strangers if they have never
met before. Prove that in any group of 6 people, there is either a
group of 3 people who are mutual acquantainces (i.e., any two in this
group of 3 have met before) or there is a group of 3 mutual strangers
(i.e., no two in this group of 3 have met before).

Proof. Let a be one of the 6 people. Let K denote the set of people a
has met (among the other 5 people) and let S be the set of people a
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has not met before. By the generalized pigeonhole principle, either
|K| ≥ 3 or |S| ≥ 3.

Case |K| ≥ 3: Let b, c, d denote 3 of the people a is acquanited
with. If any pair among b, c, d are acquainted then a, along with the
pair form a group of mutual acquaintances. On the other hand, if
none among b, c, d have met before, then they form a group of mutual
strangers.

Case |S| ≥ 3: Let b, c, d denote 3 people that a has not met. If any
pair among b, c, d are strangers, then a along with the pair form a
group of 3 mutual strangers. If that is not the case then b, c, d all are
acquainted, and so they form a group of 3 mutual acquaintances.

Ramsey Theory

Problem 2 is a special case of a result due to Ramsey that
started a sub-field within combinatorics called Ramsey The-
ory that tries to “find ordered regularity among disorder” —
find regular sub-structures in any large object. The specific
result of Ramsey states that for any ` and k, there is a number
R(`, k) such that in any group of size at least R(`, k), there is
either a group of size ` of mutual acquaintances, or a group
of size k of mutual strangers. The special case here says that
6 ≥ R(3, 3).

Principle of Inclusion-Exclusion

The principle of inclusion-exclusion is a way to calculate
the cardinality of a set that is expressed as a union of other sets. It
is a generalization of the sum rule of counting that states that the
cardinality of the union of disjoint sets is the sum of the cardinalities
of the individual sets. Before presenting the general principle of
inclusion-exclusion, we begin by looking at a couple of special cases
that you maybe familiar with.

Proposition 7. For any sets A, B, |A ∪ B| = |A|+ |B| − |A ∩ B|.

Proof. Observe that, A∪ B = A∪ (B \A). Notice that A∩ (B \A) = ∅.
Thus by the sum rule,

|A ∪ B| = |A|+ |B \ A|.

Next observe that B = (B \ A) ∪ (A ∩ B) and that (B \ A) ∩ (A ∩ B) =
∅. Therefore, again by the sum rule we have

|B| = |B \ A|+ |A ∩ B|.
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This means that |B \ A| = |B| − |A ∩ B|. Putting it all together, we
have

|A ∪ B| = |A|+ |B \ A| = |A|+ |B| − |A ∩ B|.

For 3 sets A, B, C, we can generalize Proposition 7 to get

|A∪ B∪C| = |A|+ |B|+ |C| − |A∩ B| − |A∩C| − |B∩C|+ |A∩ B∩C|.

We leave the proof of this result as an exercise for the reader. In gen-
eral, the principle of inclusion-exclusion says that the cardinality of
the union of n sets is the sum of the cardinalities of the individual
sets, minus the cardinality of their pairwise intersection, plus the
cardinality of their 3-way intersections, and so on, with the plus and
minus signs alternating with intersections of larger number of sets.
Or informally,

|S1∪S2∪ · · · ∪Sn| = ∑
1≤i≤n

|Si|− ∑
1≤i<j≤n

|Si ∩Sj|+ ∑
1≤i<j<k≤n

|Si ∩Sj ∩Sk| · · ·

This is stated fomally below.

Theorem 8 (Principle of Inclusion-Exclusion). For any sets S1, S2, . . . Sn,∣∣∣∣∣ n⋃
i=1

Si

∣∣∣∣∣ = ∑
∅ 6=I⊆{1,2,...n}

(−1)|I|+1

∣∣∣∣∣⋂
i∈I

Si

∣∣∣∣∣ .

Theorem 8 can be proved by induction using Proposition 7 to
establish the base case and to carry out the induction step. We skip
the proof here. Let us conclude our discussion by using Theorem 8 to
prove a result.

Example 9. How many integers between 1 and 100 are multiples of
either 2 or 3? We will Proposition 7 to establish this result.

Let us define a couple of sets.

A2 = {1 ≤ i ≤ 100 | 2|i} A3 = {1 ≤ i ≤ 100 | 3|i}

Observe that we need to compute |A2 ∪ A3|. We will use the principle
of inclusion-exclusion for this. We know,

|A2| =
⌊

100
2

⌋
= 50 |A3| =

⌊
100

3

⌋
= 33.

1 Notice that 1 For a real number r ∈ R, brc is largest
integer that is ≤ r. On the other hand,
dre is the smallest integer ≥ r.

A2 ∩ A3 = {1 ≤ i ≤ 100 | 6|i}.

That is, A2 ∩ A3 is the set of all numbers that are multiples of 6. Thus,
|A2 ∩ A3| = b 100

6 c = 16. Thus, by the principle of inclusion-exclusion,

|A2 ∪ A3| = |A2|+ |A3| − |A2 ∩ A3| = 50 + 33− 16 = 67.


	Pigeon Hole Principle
	Principle of Inclusion-Exclusion

