Number Theory

Benjamin Cosman, Patrick Lin and Mahesh Viswanathan

Fall 2020

TAKE-AWAYS

- $a \mid b$ means there exists an integer k such that $b=a k$. We say that a is a factor or divisor of b, and b is a multiple of a.
- For integers a and b with $a>0$, there exist unique integers q, r such that $b=q a+r$ and $0 \leq r<a . q=\operatorname{quot}(b, a)$ is called the quotient and $r=\operatorname{rem}(b, a)$ is called the remainder.
- A number greater than 1 is prime if its only factors are 1 and itself. Every integer can be written as a product of a unique weakly decreasing sequence of primes.
- $\operatorname{gcd}(a, b)$ is the largest integer dividing both a and $b . a$ and b are coprime if $\operatorname{gcd}(a, b)=1$.
- $a \equiv b \bmod n$ means $n \mid(a-b)$. This equivalence relation splits the integers into congruence classes $[a]_{n}=\{b \mid a \equiv$ $b \bmod n\}$. Any element $b \in[a]_{n}$ is called a representative of the congruence class; the canonical representative of $[a]_{n}$ is rem (a, n).
- Congruence classes can be added and multiplied.

The idea of divisibility underlies among other things, many techniques in modern cryptography and hashing. The use of prime numbers is so prevalent in cryptography that trying to efficiently factor numbers into their prime factors continues to be a major area of research in cryptography and computer security. Many common hashing schemes used for things like hash tables involve taking an input x and outputting the "congruence class" of some function of x.

Divisibility

Recall that b being even means that there exists some integer k such that $b=2 k$. We can also write this as $2 \mid b$, to be read as " 2 is a factor of b " or " b is a multiple by 2 ." We can make this more general:

Definition 1 (Divisibility). Given integers a and $b, a \mid b$ means there exists integer k such that $b=a k$. In this case we say that a is a factor or divisor of b, and b is a multiple of a.

Some examples:

- $3 \mid 6$
- $\forall a \in \mathbb{Z}, a \mid a$
- $-7 \mid 49$
- $\forall a \in \mathbb{Z}, a \mid 0$
- $83 \mid-11537$
- $\forall a \in \mathbb{Z} \backslash\{0\}, 0 \nmid a(0$ is not a factor of a)

You should probably think about the last two examples and figuring out why they are true.

A number of easy but useful facts can be proven about divisibility.
Lemma 2. For any integers a, b, c, x, y :
a) If $a \mid b$ and $b \mid c$ then $a \mid c$
b) If $a \mid b$ and $a \mid c$ then $a \mid b x+c y$
c) If $c \neq 0$, then $a \mid b$ if and only if $c a \mid c b$

Proof.
a) By definition, there exist integers k, ℓ such that $b=a k$ and $c=b \ell$.

Then $c=a(k \ell)$, so $a \mid c$.
b) By definition, there exist integers k, ℓ such that $b=a k$ and $c=a \ell$.

Then $b x+c y=a k x+a \ell y=a(k x+\ell y)$, so $a \mid b x+c y$.
c) First suppose that $a \mid b$, then $b=a k$ for some integer k, so $c b=$ $(c a) k$, so $c a \mid c b$. Now suppose $c a \mid c b$, then there exists some integer k so that $c b=c a k$. Since $c \neq 0$ we can cancel c from both sides to find $b=a k$, i.e., $a \mid b$.

It is also useful to know what happens $a \nmid b$. You probably remember exercises where you try to divide some integer b by some other integer a and get some remainder left over. This is formalized in the following theorem:

Theorem 3 (Division Theorem). Let a, b be integers such that $a>0$. Then there exist unique integers q, r such that $b=a q+r$ and $0 \leq r<a$.

Proof. We first prove existence by induction for $b \geq 0$. For $b \geq 0$, let $P(b)$ be the statement "There exist integers q, r such that $b=a q+r$ and $0 \leq r<a$."

The base cases are $P(b)$ for $0 \leq b \leq a-1$. Well, $b=0 a+b$, so we can set $q=0$ and $r=b$.

For the inductive case $k \geq a$, assume as our inductive hypothesis that P holds for all i from 0 and $k-1$. Set $\ell=k-a$. Then since $0 \leq k-a \leq k-1$, the inductive hypothesis implies $\ell=q a+r$ for
some integers q, r where $0 \leq r<a$. Then

$$
\begin{aligned}
k & =a+(k-a) \\
& =a+\ell \\
& =a+(q a+r) \\
& =(q+1) a+r .
\end{aligned}
$$

Induction complete.
For $b<0$, then $-b>0$, so there exist q, r so that $-b=q a+r$ and $0 \leq r<a$. If $r=0$, then $b=(-q) a$. Otherwise, $b=-q a-r=$ $-(q+1) a+(a-r)$, and since $0<r<a, 0<a-r<a$ as well.

We now need to show that q, r are unique. Suppose that $b=q a+$ $r=q^{\prime} a+r^{\prime}$, where $0 \leq r<a, 0 \leq r^{\prime}<a$, and $r^{\prime} \geq r$. We need to show that $q=q^{\prime}$ and $r=r^{\prime} .{ }^{1}$ Observe that $r^{\prime}-r=a\left(q-q^{\prime}\right)$. But $0 \leq r^{\prime}-r \leq r^{\prime}<a$, so $0 \leq q-q^{\prime}<1$. Since $q-q^{\prime}$ is an integer, it must be the case that $q-q^{\prime}=0$. But then also $r^{\prime}-r=0$, so $q^{\prime}=q$ and $r^{\prime}=r$.

Definition 4. Given integers a, b with $a>0$, the quotient quot (b, a) and remainder rem (b, a) are the unique integers such that $b=a$. quot $(b, a)+\operatorname{rem}(b, a)$ and $0 \leq \operatorname{rem}(b, a)<a$.

(Co)primality

Recall that an integer $p>1$ is prime if the only factors of p are 1 and p, and composite otherwise. There are many applications in which we are interested in comparing the common factors of two composite integers $a, b .^{2}$ The greatest common divisor $\operatorname{gcd}(a, b)$ is the largest integer that is a factor of both a and b. It is easy to see that for primes p, q such that $p \neq q, \operatorname{gcd}(p, q)=1$. More generally, two numbers a, b are said to be coprime or relatively prime if $\operatorname{gcd}(a, b)=1$.

The following lemma turns out to have far-reaching applications in number theory and in computer algebra in general:

Lemma 5 (Bézout's Lemma). Let a, b be non-zero integers. Then there exist integers x, y such that $a x+b y=\operatorname{gcd}(a, b)$.

You will be asked to prove Bézout's lemma in your homework. One nice consequence of Bézout's lemma is the following:

Lemma 6 (Euclid's Lemma). Suppose $a, b_{1}, b_{2}, \ldots, b_{k}$ are integers such that a is prime and a $\mid b_{1} b_{2} \ldots b_{k}$. There there exists some $i, 1 \leq i \leq k$, such that $a \mid b_{i}$.

Proof. We will use Bézout's lemma to show the special case of $k=2$. The general result follows via induction. ${ }^{3}$
${ }^{1}$ Recall that "there exists exactly one $x, P(x)^{\prime \prime}$ means that there exists at least one $x, P(x)$, and for all x, y, $P(x)=P(y)$ implies $x=y$.

[^0]${ }^{3}$ If you can't see how this works right away, you should work out the full induction details for yourself.

If $a \mid b_{1}$, then we are done. So suppose that $a \nmid b_{1}$. Since a is prime, $\operatorname{gcd}\left(a, b_{1}\right)=1$. By Bézout's lemma, there exist integers x, y so that $a x+b_{1} y=\operatorname{gcd}\left(a, b_{1}\right)=1$. Then multiplying both sides by b_{2}, we get $b_{2}\left(a x+b_{1} y\right)=a b_{2} x+b_{1} b_{2} y=b_{2}$. Since $a \mid b_{1} b_{2}$ by assumption, $a \mid a b_{2} x+b_{1} b_{2} y$ by Lemma 2. So $a \mid b_{2}$.

We previously saw (in the unit on Induction) that every integer $n \geq 2$ is a product of one or more primes. This is known as a prime factorization of n. It turns out that the prime factorization of every integer $n \geq 2$ is unique up to reordering the factors. In other words, if we rearrange the prime factors in weakly decreasing order ${ }^{4}$ then n is a product of a unique weakly decreasing sequence of primes, or pusp, for short. ${ }^{5}$

Theorem 7 (Fundamental Theorem of Arithmetic). Every integer greater than one is a pusp.

Proof. By induction.
The base case is $n=2: 2$ is prime, and by definition there is only one sequence of primes whose product is 2 , namely, 2 .

For the inductive case, assume as our inductive hypothesis that every number i between 2 and $n-1$ is a pusp. We will now show that n is a pusp.

We already know that n can be written as a product of primes, $n=p_{1} p_{2} \ldots p_{k}$. Since multiplication is commutative, we can assume (by reordering if necessary) that $p_{1} \geq p_{2} \geq \cdots \geq p_{k}$. Now suppose that n can be written as a product of primes in a different way, $n=$ $q_{1} q_{2} \ldots q_{\ell}$.

Set $m=p_{2} p_{3} \ldots p_{k}$, so that $p_{1} m=n=q_{1} q_{2} \ldots q_{\ell}$. Since $m \in \mathbb{Z}$ we know that $p_{1} \mid q_{1} q_{2} \ldots q_{\ell}$. By Euclid's Lemma, $p_{1} \mid q_{i}$ where $1 \leq i \leq \ell$. But since $p_{1} \neq 1$ and q_{i} is prime, we conclude that $p_{1}=q_{i}$. By reordering the factors $q_{1}, q_{2}, \ldots, q_{\ell}$, we can assume that $i=1$ (so $p_{1}=q_{1}$) and that $q_{2} \geq q_{3} \geq \cdots \geq q_{\ell}$.

We now have $p_{2} \ldots p_{k}=m=q_{2} \ldots q_{\ell}$. But since $2 \leq m \leq n-1$, by the inductive hypothesis, m is a pusp, so the sequences p_{2}, \ldots, p_{k} and q_{2}, \ldots, q_{ℓ} are the same.

We conclude that any two ways of writing n as a product of a weakly decreasing sequence of primes are actually the same, i.e., n is a pusp. Induction complete.

Congruence modulo n and modular arithmetic

Recall that there are an infinite number of integers, but computers have finite memory. More generally, we might be working with a very large set of possible numbers, but we would much prefer to do
${ }^{4}$ A sequence of numbers is weakly decreasing if each number in the sequence is greater than or equal to the numbers after it.
${ }^{5}$ You probably recall a bogus proof of this fact from the Induction Homework.
our computations over a much smaller set. ${ }^{6}$ One way to do this is via modular arithmetic, which preserves some useful properties of normal arithmetic over the integers.

Definition 8. For integers a, b, n with $n>0, a \equiv b \bmod n(a$ and b are congruent modulo n) if and only if $n \mid(a-b)$.

Note that $n \mid(a-b)$ if and only if $n \mid(b-a)$, so the definition is symmetric in a and b.

Let us practice using this definition by proving the following useful lemma:

Lemma 9. Let a, b, c, d, n be integers with $n>0$ such that $a \equiv c \bmod n$ and $b \equiv d \bmod n$. Then:
a) $a+b \equiv c+d \bmod n$, and
b) $a b \equiv c d \bmod n$.

Proof. Let a, b, c, d, n be integers with $n>0$ such that $a \equiv c \bmod n$ and $b \equiv d \bmod n$. Then $n \mid(a-c)$ and $n \mid(b-d)$.

For the first part, Lemma 2 tells us that $n \mid((a-c)+(b-d))=$ $((a+b)-(c+d))$. So $a+b \equiv c+d \bmod n$.

The second part is slightly more difficult. From $n \mid(a-c)$, we know that there exists some integer k such that $n k=a-c$, and from $n \mid(b-d)$, we know there exists some integer ℓ such that $n \ell=b-d$. Rearranging, we get $a=c+n k$ and $b=d+n \ell$, so $a b=(c+n k)(d+n \ell)=c d+n(c \ell+d k+n k \ell)$. Since $c \ell+d k+n k \ell \in \mathbb{Z}$, we conclude $n \mid(a b-c d)$, i.e., $a b \equiv c d \bmod n$.

Definition 10. Given integers a and n, the congruence class of a modulo n is the set $[a]_{n}=\{b \mid a \equiv b \bmod n\} .7$ Any element $b \in[a]_{n}$ is called a representative of $[a]_{n}$.

Lemma 9 tells us that if $c \in[a]_{n}$ and $d \in[b]_{n}$, then $c+d \equiv$ $a+b \bmod n$, i.e., $[c+d]_{n}=[a+b]_{n}$, and similarly, $c d \equiv a b \bmod n$, i.e., $[c d]_{n}=[a b]_{n}$. In other words, no matter which representatives we choose when adding or multiplying, we end up in the same equivalence class at the end. This justifies the following definition:

Definition 11 (Modular Arithmetic).
a) $[a]_{n}+[b]_{n}=[a+b]_{n}$
b) $[a]_{n}[b]_{n}=[a b]_{n}$

The definition of congruence class implies that if $b \in[a]_{n}$, then $[a]_{n}=[b]_{n}$. One common way to think about modular arithmetic is by thinking of a number a as being "the same" as its remainder when divided by n :
${ }^{6}$ For example, storing data in a hash table.
${ }^{7}$ Congruence modulo n is an equivalence relation over the integers, and you can verify for yourself that the relation is reflexive, symmetric, and transitive. Equivalence relations over a set A split the set into disjoint equivalence classes. Congruence classes are a special case of this more general phenomenon.

Lemma 12. $a \equiv \operatorname{rem}(a, n) \bmod n$, i.e., $[a]_{n}=[\operatorname{rem}(a, n)]_{n}$.
$\operatorname{rem}(a, n)$ is often referred to as the canonical representative of $[a]_{n}$. In particular, doing computations using rem (a, n) can greatly simplify computations. For example, consider $a=79, b=102$, and $n=4$. Then $\operatorname{rem}(a, n)=3$ and rem $(b, n)=2$. Instead of computing $[79+$ $102]_{4}=[181]_{4}=[1]_{4}$, we can compute $[79]_{4}+[102]_{4}=[3]_{4}+[2]_{4}=$ $[3+2]_{4}=[5]_{4}=[1]_{4}$. Similarly, instead of computing $[79]_{4}[102]_{4}=$ $[79 \cdot 102]_{4}=[8058]_{4}=[2]_{4}$, we can compute $[79]_{4}[102]_{4}=[3]_{4}[2]_{4}=$ $[6]_{4}=[2]_{4}$.

[^0]: ${ }^{2}$ Many cryptographic methods, such as the RSA algorithm, are based on the idea that the prime factors are hard to compute.

