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TAKE-AWAYS

• A directed graph (or digraph) is a set of vertices along with
a set of directed edges that each point from one vertex to
another.

• Informally, a digraph is just a bunch of dots and arrows,
which can be a useful visualization of a relation R ⊆ A× A.

• A walk is an alternating list of vertices and the edges that
connect them (usually described using just the vertices or
just the edges). A path is a walk that does not repeat ver-
tices. A closed walk is a walk that ends where it begins. A
cycle is a positive-length closed walk that does not repeat
vertices (other than the end being a repeat of the start).

• dist(u, v) (short for distance) is the length of the shortest
path from u to v.

• Two walks can be merged into one walk w1 x̂w2 if w1 ends at
x and w2 starts at x.

• A DAG (directed acyclic graph) is a digraph with no cycles.
A cyclic digraph has one or more cycles.

• A topological sort of a digraph is a list of all its vertices such
that for each edge (u, v), u comes before v in the list. On
this week’s homework you will prove that a digraph has a
topological sort if and only if it is a DAG.

• A relation R is reflexive if ∀x(xRx).

• A relation R is symmetric if ∀x∀y(xRy→ yRx).

• A relation R is transitive if ∀x∀y∀z((xRy ∧ yRz)→ xRz).

• A relation is an equivalence relation if it is reflexive, symmet-
ric, and transitive.
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Directed Graphs

What does the internet have in common with your course cata-
log? Both can be thought of as a group of things with connections
between them. On the internet, we have web pages, and some are
connected to each other by hyperlinks; in the catalog we have classes,
and some classes are required by others as prerequisites. And some
of the questions we might ask about both internet and catalog are
based entirely on this structure. On the internet, we might want to
identify pages with lots of incoming links because they’re more likely
to be trustworthy. In the catalog, you might want to identify classes
with many outgoing links (i.e. which are often required as prerequi-
sites) so you can take them early and have more choices later. So let’s
do the mathematician thing and zoom in on the underlying structure
for closer study.

Definition 1 (Directed Graphs). A directed graph (digraph for short) is
a set of vertices V(G)1 and a set of directed edges E(G), where E(G) ⊆ 1 In this class you may always assume

a graph has a finite number of vertices
unless a problem specifies otherwise

V(G)×V(G).

A B

C D

A B D C

Figure 1: Two representations of the exact same digraph G where V(G) = {A, B, C, D}
and E(G) = {(A, A), (A, B), (B, A), (B, C), (C, A)}

We will often represent a digraph using a picture by drawing a
dot for each vertex and an arrow pointing from u to v for each edge



directed graphs 3

(u, v) (Figure 1). The picture is a valid representation of the digraph
as long as the correct vertices and arrows are present; other details of
the drawing, such as the relative positions of the vertices or curvature
of the arrows, do not matter.

Many questions involving digraphs end up being about "walking
around" on the graph from vertex to vertex across edges - sometimes
literally, if the vertices are locations and the edges are (one-way)
roads, but also metaphorically, such as following a chain of prerequi-
sites through several classes. We formalize this idea as follows:

Definition 2 (Walks). A walk in a digraph is an alternating sequence
of vertices and edges starting and ending with a vertex, such that
each edge points from the vertex before it to the one after it in the
sequence. The length of a walk w, written |w|, is the number of edges
in it.

Example 3. In Figure 1, the following is a walk of length 4:
C(C, A)A(A, A)A(A, A)A(A, B)B

You will rarely see (or have to write) a walk in its official full form
- as long as it is clear from context, it is common to abbreviate it to
just the list of vertices, or occasionally just the list of edges. So in
the example above, we would more frequently write CAAAB2 or 2 Note that the length of the walk is still

the number of edges, so the length of
CAAAB is 4, not 5

perhaps (C, A)(A, A)(A, A)(A, B).

Definition 4 (Merging walks). Two walks w1 and w2 can be merged
into one walk if the second starts at the same vertex x where the first
ended. We write the merged walk as w1̂ w2 or w1 x̂w2.

Example 5. In Figure 1, if w1 is AB and w2 is BAC then w1̂ w2 (or
w1B̂w2) is ABAC.

In several application domains, we frequently want to know if a
walk repeats any vertices and if it ends up back where it started. For
example for a physical walk out in the city, visiting the same location
multiple times may be undesirable if you’re trying for some kind of
variety or errand efficiency, and if you start at home you may want to
make sure you end up there again at end of day. We formalize these
ideas as follows (sorry for the flood of vocabulary this week!):

Definition 6 (Walk variants). A path is a walk that does not repeat
vertices. A closed walk is a walk that ends where it starts. A cycle is a
positive-length closed walk that does not repeat vertices (except the
end vertex, which does need to be a repeat of the start).

Example 7. In Figure 1, A and CAB are paths. CABCABC is a closed
walk, but not a cycle because of repeat vertices. A is a closed walk
but not a cycle because it has length 0. AA and ABCA are closed
walks and also cycles.
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It is sometimes easier to work with walks in G using a few related
graphs. For each n ∈ N, let Gn be the digraph where V(Gn) = V(G)

and (u, v) ∈ E(Gn) when there is a walk of length exactly n from u to
v in G. Similarly, an edge (u, v) is in E(G∗) if there is any walk from
u to v in G, and (u, v) is in E(G+) if there is any positive-length walk
from u to v in G. See Figure 2 for examples.

A B

C D

A B

C D

A B

C D

Figure 2: From top to bottom: a) The original graph G from Figure 1, b) G2, and c)
G∗. G+ would be the same as G∗ except that it would not have the self-loop on vertex
D (because in G there is a walk from D to D of length 0, but no walk with positive
length). Notice that not all edges from G appear in G2.

Definition 8 (Distance). The distance from vertex u to v, written
dist(u, v), is the length of any shortest path from u to v.
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Example 9. In Figure 1, dist(B, B) = 0, dist(B, C) = 1, and dist(C, B) =
2.

In many domains it is important that a digraph have no cycles at
all. For example, if there were any cycles in the course prerequisite
graph, it would be impossible to take any of those courses!

Definition 10 (DAG). A digraph that has no cycles is acyclic; a di-
graph with any cycles is called cyclic. "Acyclic digraph" is often ab-
breviated DAG (Directed Acyclic Graph).

A key property related to DAGs is the topological sort:

Definition 11 (Topological sort). A topological sort of a digraph G is
an ordering of all the vertices V(G) such that for each edge (u, v), u
appears before v in the ordering.

Example 12. Figure 3 is a DAG because there are no cycles. The two
possible topological sorts are A, B, C, D and A, B, D, C.

A B

C D

Figure 3: An example DAG (directed acyclic graph)

The following important link between DAGs and topological sorts
is listed here for completeness but do not use this result on the work-
sheet or homework since you will be proving it yourself:

Theorem 13. A directed graph has a topological sort if and only if it is
acyclic.

Relations

Notice that for any digraph G, the set of edges E(G) is a relation3. 3 Review week 3 if needed

Similarly, any binary relation R ⊆ A× A can be turned into the edges
of a digraph. (Relations on two different sets, or on three or more sets,
are not naturally turned into graphs.)

An common and important kind of relation is one that represents
when two things are in some way "the same". Examples include
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equality (e.g. 3 = 2 + 1) and logical equivalence between propositions
(e.g. ¬¬p ≡ p). There are three properties which together correspond
to an intuitive notion of how a "sameness" relation should behave:
every item is the same as itself, if x is the same as y then y is the
same as x, and if x is the same as y and y is the same as z then x is
the same as z. We formalize these properties as follows:

Definition 14 (Equivalence Relations). A relation R ⊆ A× A is

• reflexive if ∀x(xRx)4. 4 Recall: we say aRb to mean (a, b) ∈ R

• symmetric if ∀x∀y(xRy→ yRx).

• transitive if ∀x∀y∀z((xRy ∧ yRz)→ xRz).

• an equivalence relation if it is reflexive, symmetric, and transitive.

Example 15. Consider the relation R ⊆ R×R = {(a, b)|a ≤ b}. It
is reflexive because for any x, x ≤ x. It is transitive because for any
x, y, z where x ≤ y and y ≤ z, we also have x ≤ z. However it is
not symmetric: even though there are some x, y where (xRy → yRx)
holds (i.e., any x and y that are equal), for R to be symmetric that
would need to hold for every x, y and it does not (e.g. 3 ≤ 5 but
5 6≤ 3). Thus R is not an equivalence relation (which makes sense
according to the "sameness" intuition - x ≤ y was never supposed to
mean that x and y must be in any way the same).
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