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TAKE-AWAYS

• The cardinality of a finite set A (denoted |A|) is the number
of elements in set A.

• The cardinality of the Cartesian product of finite sets is
the product of the cardinalities of the individual sets, i.e.,
|A1 × A2 × · · · × Ak| = n1n2 · · · nk, where |Ai| = ni for
i ∈ {1, 2, . . . k}.

• For finite sets A, B, if there is a surjective function f : A →
B then |B| ≤ |A|, and if there is a bijective function f : A →
B then |A| = |B|.

• For any finite set A, |P(A)| = 2|A|.

• Cantor’s Definition: For infinite sets A, B, we say |B| ≤ |A| if
there is a surjective (onto) function f : A → B, and we say
|A| = |B| if there is a bijective function f : A→ B.

• The following properties hold for Cantor’s definition. For
any set A, |A| = |A|. If B ⊆ A then |B| ≤ |A|. Finally,
for infinite sets A, B, C, if |A| = |B| and |B| = |C| then
|A| = |C|, and if |A| ≤ |B| and |B| ≤ |C| then |A| ≤ |C|.

• Cantor-Schröder-Bernstein Theorem: For any infinite sets A
and B, if |A| ≤ |B| and |B| ≤ |A| then |A| = |B|.

• For infinite sets A and B, if there is an injective function f :
A → B then there is a surjective function g : B → A. Thus,
if there is an injective function f : A→ B then |A| ≤ |B|.

• A set S is countable if either S is finite or |S| = |N|.

• The sets E (= {2n | n ∈ N}), N, Z, and N × N are all
countable.

• P(N) is not countable.
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Finite Sets

The cardinality of a set A is the number of elements in set A, and
it is denoted by |A|. Thus, |{0, 1}| = 2 since {0, 1} has two elements
0 and 1. On the other hand, since ∅ has no elements, |∅| = 0. Notice
that |{N, Z}| = 2; eventhough each element of {N, Z} is set with
infinitely many members, {N, Z} has only 2 elements, namely N

and Z. Finally, as

{0, 1} × {0, 1} × {0, 1} = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),

(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)},

|{0, 1} × {0, 1} × {0, 1}| = 8.
The example in the previous paragraph about the cardinality of

{0, 1} × {0, 1} × {0, 1} can be generalized — the cardinality of the
Cartesian product of sets is the product of the cardinalities of the
individual sets. Let us prove this observation.

Proposition 1. For any finite sets A1, A2, . . . Ak, |A1 × A2 × · · · × Ak| =
n1n2 · · · nk, where |Ai| = ni for i ∈ {1, 2, . . . k}.

Proof. Let A1, A2, . . . Ak be arbitrary finite sets such that |Ai| = ni

for i ∈ {1, 2, . . . k}. Elements of the set A1 × A2 × · · · × Ak are tu-
ples/sequences of the form (a1, a2, . . . ak), where ai is an element of
set Ai. Since each ai can be any element of Ai, we have n1 choices for
a1, n2 choices for a2, and so on. Thus the total number of possible tu-
ples in A1 × A2 × · · · × Ak (which is its cardinality) is n1n2 · · · nk.

While we can compare the size of two sets by counting the el-
ements in each set, we can also do it by the presence of certain
types of functions between the sets. If there is a surjective function
f : A → B then we can conclude that the |B| ≤ |A|. This is an
important observation that we prove next.

Proposition 2. If there is a surjective funtion f : A → B then |B| ≤ |A|.
If there is a bijective function f : A→ B then |A| = |B|.

Proof. Let A and B be arbitrary finite sets, and let f : A → B be any
function (not necessarily surjective or bijective). Since every element
in A is mapped to some element in the rng( f ), we can conclude that
|A| ≥ |rng( f )|. That is,

|A| ≥ |{ f (a) | a ∈ A}| = |rng( f )|.

Further since rng( f ) ⊆ B, we have the |rng( f )| ≤ |B|. Putting these
observations together we get

|A| ≥ |rng( f )| ≤ |B|.



cardinality 3

These observations we have made so far are true for any function f .
When f is surjective or onto, by definition, the rng( f ) = codom( f ) =

B. Thus in this case
|A| ≥ |rng( f )| = B.

If f is injective or 1-to-1, then since every element in A is mapped
to a different element. Thus, when f is injective, we have |A| =
|rng( f )|. Therefore,

|A| = |rng( f )| ≤ B.

Therefore, if f is a bijective function, then since f is both injective
and surjective,

|A| = |rng( f )| = |B|.

Proposition 2 is very useful since it allows one to compute the size
of one set based on another set whose size is easy to compute. Let us
apply this to determine the cardinality of power sets.

Proposition 3. For any finite set A, |P(A)| = 2|A|.

Proof. Consider an arbitrary finite set A. Let A = {a1, a2, . . . an}, i.e.,
|A| = n. Our proof will have the following structure. First we will
show that the |P(A)| = |{0, 1}n| 1. We will show this by demonstrat- 1 {0, 1}n denotes the n-fold Carte-

sian product of {0, 1} with itself, i.e.,

{0, 1}n =

n︷ ︸︸ ︷
{0, 1} × {0, 1} × · · · × {0, 1}.

ing a bijection between P(A) and {0, 1}n, and using Proposition 2.
Next, observe that by Proposition 1, |{0, 1}n| = 2n. Putting these
together proves our proposition.

Let us now prove that |P(A)| = |{0, 1}n| by defining a bijection χ :
P(A) → {0, 1}n; χ is sometimes called the characteristic function. The
function χ is defined as follows: for S ⊆ A, χ(S) = (b1, b2, . . . bn) ∈
{0, 1}n where, for any i

bi =

1 if ai ∈ S

0 if ai 6∈ S

Let us look at an example to understand the function χ. Suppose
A = {1, 2, 3, 4, 5} and S = {2, 4, 5}. Then χ(S) = (0, 1, 0, 1, 1). On the
other hand, χ(∅) = (0, 0, 0, 0, 0) while χ(A) = (1, 1, 1, 1, 1).

We will now prove that χ is bijective. Consider arbitrary sub-
sets S, T of A such that S 6= T. Since S 6= T, there must be some
element (say) ai that belongs to exactly one out of S and T. With-
out loss of generality, assume that ai ∈ S and ai 6∈ T 2. Suppose 2 There are two possibilties to consider

— either ai ∈ S and ai 6∈ T or ai ∈ T
and ai 6∈ S. The proof in each of
these two cases is the same. To avoid
repeating this proof twice, we say
“without loss of generality” to say
that “we will prove the case when
ai ∈ S and ai 6∈ T, and the other
case is the same so we skip its proof”.
Sometimes “without loss of generality”
is abbreviated as “WLOG”.

χ(S) = (b1, b2, . . . bn) and χ(T) = (c1, c2, . . . cn). Observe that
bi = 1 but ci = 0. Thus, χ(S) 6= χ(T). This proves that χ is in-
jective. To prove that χ is surjective, consider an arbitrary tuple
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v = (b1, b2, . . . bn) ∈ {0, 1}n. We will show that v ∈ rng(χ). De-
fine set(v) = {ai | bi = 1}. Observe that χ(set(v)) = v, proving that χ

is surjective.
To summarize our argument, since χ is bijective, by Proposition 2,

|P(A)| = |{0, 1}n|. Further by Proposition 1, |{0, 1}n| = 2n. There-
fore, since |A| = n, we have |A| = |{0, 1}n| = 2n = 2|A|, establishing
the proposition.

Infinite Sets

What is the cardinality of infinite sized sets? It is diffi-
cult to take it to be “the number of elements in the set” because that
would require us to count to infinity (and beyond?). But what does
it mean to count to such numbers? Should we take the cardinality of
all such sets to be just ∞? Does that mean that all such sets have the
same “size” (whatever that means)? Georg Canter’s remarkable re-
alization was that Proposition 2 can serve as the basis for comparing
the size of (even) infinite sets and uses it to define the cardinality of
infinite sets.

Definition 4 (Cantor). For infinite sets A, B, we say |B| ≤ |A| if there
is a surjective (onto) function f : A→ B. We say |A| = |B| if there is a
bijective function f : A→ B.

Notice that for infinite sets, this is a definition. It cannot be proved
like we did for finite sets, since there is no independent notion of size
for infinite sets. This simple definition is one of the most important
discoveries in mathematics and has some counterintuitive conse-
quences that are best understood by looking at examples. We begin
by making a series of observations that demostrate that Definition 4

is sound, i.e., it has all the properties one would expect if it aims to
capture the size of sets. After that, we look at examples that highlight
its subtle aspects.

Properties of Cantor’s Definition

We begin by making some simple observations that confirm that this
definition behaves naturally. For example, clearly we expect, for any
set A, |A| = |A|; observe that this statement requires a proof now
because we need to show the existence of a bijective function from
A to A. Another natural property we expect is that if B ⊆ A then
|B| ≤ |A|. These do indeed hold.

Proposition 5. For arbitrary infinite sets A, B, |A| = |A| and if B ⊆ A
then |B| ≤ |A|.
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Proof. Let A and B be arbitrary infinite sets.
To show |A| = |A|, we need to find a bijective function f : A → A.

Take f to be the identity function, i.e., for every a ∈ A, f (a) = a.
We need to prove that f is bijective. Clearly, if f (a) = f (b) for any
a, b ∈ A then since f (a) = a and f (b) = b, we have a = b. Thus f
is injective. And we know that f is surjective because for any a ∈ A,
f (a) = a; thus rng( f ) = codom( f ) = A.

Now assume (for a direct proof) that B ⊆ A. Since B is an infinite
set B 6= ∅ and let b0 be a particular element of B. To show that
|B| ≤ |A|, by Cantor’s definition, we need to show that there is a
surjective function g : A→ B. Let us define g as follows.

g(a) =

a if a ∈ B

b0 if a 6∈ B

We will show that g is surjective. Observe that for any b ∈ B, g(b) =
b. Thus, rng(g) = codom(g) = B.

Next, we would expect that if a set B has size no more than A, and
set C has size no more than B, then C must have size no more than
A. Similarly, one would expect that if |A| = |B| and |B| = |C| then
|A| = |C|.

Proposition 6. Let A, B, and C be arbitrary infinite sets.

1. If |B| ≤ |A| and |C| ≤ |B| then then |C| ≤ |A|.

2. If |A| = |B| and |B| = |C| then |A| = |C|.

Proof. Let A, B, and C be arbitrary infinite sets. Let us prove each of
these statement using a direct proof.

1. Suppose |B| ≤ |A| and |C| ≤ |B|. By Definition 4, there are
surjective functions f : A → B and g : B → C. We need to
show that |C| ≤ |A|, that is, there is a surjective function from A
to C. Consider the function g ◦ f : A → C. We will claim that
g ◦ f is surjective 3. Let c be an arbitrary element of C. Since g is 3 We proved this in Homework 3,

Problem 4(a), but we repeat it here for
completeness.

surjective, there is a b ∈ B such that g(b) = c. Similarly, since f is
surjective, there is a a ∈ A such that f (a) = b. Then observe that
g ◦ f (a) = g( f (a)) = g(b) = c. Thus, g ◦ f is surjective.

2. Assume |A| = |B| and |B| = |C|. By Definition 4, there are bijective
functions f : A → B and g : B → C. We need to prove that
there is a bijective function from A to C. Consider the function
g ◦ f : A → C. We will show that g ◦ f is bijective. From the
previous part, we already know that g ◦ f is surjective. So all that
is left is to prove that g ◦ f is injective. Let a1, a2 ∈ A be arbitrary
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elements such that g ◦ f (a1) = g ◦ f (a2). Observe that we have
g ◦ f (a1) = g( f (a1)) = g( f (a2)) = g ◦ f (a2). Observe that since g is
injective, f (a1) = f (a2). Next, since f is injective, we have a1 = a2.
This proves that g ◦ f is injective. Since g ◦ f is both injective and
surjective, it is bijective, thus showing that |A| = |C|.

Finally, one would expect that if |A| ≤ |B| and |B| ≤ |A| then
|A| = |B|. This is an important result in set theory called the Cantor-
Schröder-Bernstein theorem.

Theorem 7 (Cantor-Schröder-Bernstein). For any infinite sets A, and B,
if |A| ≤ |B| and |B| ≤ |A| then |A| = |B|.

The fact that it is “named theorem” suggests both its importance
and its difficulty in proving. But why is it so difficult to prove? Isn’t
it obvious? To realize its subtlety, it helps to re-read this statement
using Cantor’s definition about cardinality. The theorem is stating
that if there is a surjective function f : B→ A, and a surjective function
g : A → B then there is a bijective function h : A → B. The proof of
this result is beyond the scope of these lectures.

Examples

Let us look at some examples. Let us look at the set N and the set of
even natural numbers

E = {2n | n ∈N}.

Clearly, since E ⊆ N (from Proposition 5) |E| ≤ |N|. In addition, E

is proper subset of N — there are infinitely many numbers, namely
the odd numbers, that belong to N but not to E. This suggests that
E should be set of smaller size. However, it turns out it has the same
size as N.

Proposition 8. |E| = |{2n | n ∈N}| = |N|.

Proof. To prove that E and N have the same cardinality, we need to
show that there is a bijective function between the two sets. Consider
the function dbl : N → E where dbl(n) = 2n. We will prove that this
function is bijective.

Injective: Let us prove that dbl is injective. That requires us to show
that if dbl(m) = dbl(n) then m = n. Let us prove this by a direct
proof. Consider arbitrary m and n such that dbl(m) = dbl(n). This
means that 2m = 2n. Dividing both sides by 2, we can conclude
that m = n. Therefore dbl is injective.
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Surjective: Next, let us prove that dbl is surjective. That is, every even
number is in rng(dbl). Let m be an arbitrary even number. That
means there is a natural number k such that m = 2k. That means
dbl(k) = m.

Another surprising observation, like Proposition 8, is that Z and
N have the same cardinality, despite the fact that Z has infinitely
many elements that are not in N.

Proposition 9. |Z| = |N|.

Proof. Once again to prove this proposition, we need to show that
there is a bijective function between the two sets. Consider the func-
tion sgn : Z → N that maps non-negative integers to even natural
numbers and negative numbers to odd natural numbers as shown
below.

0 7→ 0

−1 7→ 1

1 7→ 2

−2 7→ 3

2 7→ 4

...

sgn can be defined precisely as

sgn(k) =

2k if k ≥ 0

2(−k)− 1 if k < 0

The proof that sgn is bijective is as follows.

Injective: Let i, j be arbitrary integers such that sgn(i) = sgn(j). Since
non-negative integers are mapped to even numbers and negative
integers to odd, it must be the case that either both i, j are non-
negative or both are negative. Let us consider these two cases in
order. Suppose i, j are both non-negative. Then sgn(i) = 2i = 2j =
sgn(j) which means that i = j. On the other hand, if i, j are both
negative, then sgn(i) = 2(−i) − 1 = 2(−j) − 1 = sgn(j). Again,
simplifying the equation 2(−i)− 1 = 2(−j)− 1, we get i = j.

Surjective: Consider an arbitrary n ∈ N. We consider two cases. If
n is even then n = 2k for some k. We have sgn(k) = 2k = n. If n
is odd then, by definition, there is a k such that n = 2k + 1. Take
u = −(k + 1). Observe that sgn(u) = 2(−u)− 1 = 2(k + 1)− 1 =

2k + 1 = n.
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All infinite subsets of N can be shown to have the same cardinality
as N, as per Cantor’s definition. Thus, N is the “smallest” infinite
set. This leads to the definition of countable sets.

Definition 10 (Countable). A set S is countable if it is either finite or
|S| = |N|.

Based on Propositions 5, 8 and 9, we can conclude that E, N, and
Z are countable.

Let us consider the set N ×N. On the face of it N ×N seems
like a much larger set than N. But it turns out that it has the same
cardinality. To prove this, it is useful to make one observation about
the connection between injective functions and cardinality.

Proposition 11. Let A and B be arbitrary sets such that A 6= ∅. If there
is an injective function f : A → B then there is a surjective function
g : B→ A.

Proof. Let A, B be arbitrary sets with A 6= ∅. Since A is non-empty,
let a0 be some element of A. Let f : A → B be an injective function.
Define the function g : B→ A as follows.

g(b) =

a if f (a) = b

a0 if b 6∈ rng( f )

Observe that g, by definition, is surjective.

An immediate consequence of Proposition 11 is that the presence
of an injective function f : A→ B means that |A| ≤ |B|.

Corollary 12. For infinite sets A and B, if there is an injective function
f : A→ B then |A| ≤ |B|.

Proof. Let f : A → B be an injective function. By Proposition 11,
there is a surjective function g : B → A. Then by Definition 4,
|A| ≤ |B|.

We are now ready to establish the countability of N×N.

Proposition 13. The set N×N is countable, i.e., |N×N| = |N|.

Proof. We will use Corollary 12 and Theorem 7 to prove this result.
That is, we will show that there are injective functions f : N →
N×N and g : N×N→N, thereby establishing that |N| ≤ |N×N|
and |N×N| ≤ |N| and therefore |N×N| = |N|.

Take f : N → N×N be defined as f (n) = (n, 0). It is easy to see
that f is injective since f (n) = (n, 0) = (m, 0) = f (m) means that
n = m.
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Consider g : N×N → N to be g((m, n)) = 2m3n. Again injec-
tiveness of g can be seen as follows. Suppose g((m1, n1)) = 2m13n1 =

2m23n2 = g((m2, n2)). Then by uniqueness of prime factorization, it
means that m1 = m2 and n1 = n2. Thus, (m1, n1) = (m2, n2).

Diagonalization

Are there infinite sets that are not countable? Even
though all the infinite sets we have seen so far are countable, there
are sets whose cardinality is larger than N. Cantor showed that
P(N) is not countable. He used a very clever proof technique called
diagonalization, which we will see in this section.

Theorem 14 (Cantor). P(N) is not countable.

Proof Sketch. Before presenting the proof, let us look at an outline of
how we will show that the power set of the natural numbers is not
countable. Observe that we need to prove that |N| 6= |P(N)|. By
Cantor’s definition, this requires us to prove that

there is no bijective function from N to P(N).

We will instead show something stronger. We will prove that there
is not surjective function from N to P(N). In other words, we will
prove

if f : N→ P(N) then f is not surjective.

So what we are showing is in fact, |P(N)| 6≤ |N|.
Let us consider an arbitrary function f : N → P(N). It is useful

to sketch out the ideas for this proof by looking at an example f . So
consider (say) f defined as follows.

f (0) = {1, 4}
f (1) = {0, 2, 3, 4}
f (2) = ∅
f (3) = {5, 6, 7}
f (4) = N

f (5) = E

f (6) = {1, 3, 5, 7}
f (7) = {0, 2, 4}
...

Recall (from the proof of Proposition 3) there is a 1-to-1 onto cor-
respondence between the subsets of a universe, and 0/1 sequences
of length equal to the cardinality of the universe. Thus, every sub-
set S of N can mapped to an infinite sequence of 0s and 1s that



cardinality 10

indicates those numbers that belong to S. For example, the set
{1, 4} corresponds to an infinite sequence of 0s and 1s that has
1s at position 1 and 4, and 0s everywhere else, i.e., the sequence
0, 1, 0, 0, 1, 0, 0, 0, 0, · · · .

Therefore, the function f can be represented by an infinite table
or matrix, where the row corresponding to 0 is the sequence of 0s
and 1s that encodes f (0), The row corresponding to 1 is sequence
corresponding to f (1), and so on. For the example f shown above,
this matrix will look as follows.

0 1 2 3 4 5 6 7 · · ·
0 0 1 0 0 1 0 0 0 · · ·
1 1 0 1 1 1 0 0 0 · · ·
2 0 0 0 0 0 0 0 0 · · ·
3 0 0 0 0 0 1 1 1 · · ·
4 1 1 1 1 1 1 1 1 · · ·
5 1 0 1 0 1 0 1 0 · · ·
6 0 1 0 1 0 1 0 1 · · ·
7 1 0 1 0 1 0 0 0 · · ·
...

...
...

...
...

...
...

...
...

...
To prove that the function f is not surjective, we will find a set

K f ⊆ N that is not in rng( f ). This set will be constructed from the
principal diagonal of this infinite matrix by flipping each bit along
the diagonal. In the example above, this corresponds to flipping each
of the red entries in the matrix to get the sequence 1, 1, 1, 1, 0, 1, 1, 1, · · ·
which corresponds to the set K f = {0, 1, 2, 3, 5, 6, 7, · · · } that contains
0, 1, 2, 3, 5, 6, and 7, but not 4.

For the constructed set K f to be in the range of f , we need the
corresponding binary sequence to match some row of this infinite
matrix. But that is impossible! For example, constructed sequence is
not the same as the first row because it differs in the first position, it
is not the second row because they differ in the second position, it is
not the third row because they differ in the third position, and so on.
In general, the constructed sequence differs from the ith row in the
ith position. Thus, K f 6∈ rng( f ), and f is not surjective. To conclude,
this means that there is no bijective function from N to P(N), and so
P(N) is not countable.

Proof of Theorem 14. We will prove that there is no surjective function
from N to P(N) using the ideas just outlined. Let f : N → P(N) be
an arbitrary function. We will prove that f is not surjective. Consider
the subset K f ∈ P(N) defined as follows.

K f = {i ∈N | i 6∈ f (i)}

We claim that K f 6∈ rng( f ), and thereby establishing that f is not
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surjective. To show that K f 6∈ rng( f ), we will prove that K f 6= f (n)
for any n. Observe that by definition of K f , n ∈ K f if and only if
n 6∈ f (n). Thus, n ∈ (K f \ f (n)) ∪ ( f (n) \ K f ) or K f 6= f (n).
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