## Recursion and Structural Induction Homework

## Benjamin Cosman, Patrick Lin and Mahesh Viswanathan

Fall 2020

Problem 1. Consider a set $S$ defined recursively: $1 \in S$, and if $x \in S$ then $-x \in S$ and $2 x \in S$.
a) What is the set $S$ ? (Give an equivalent non-recursive description, e.g. in set-builder notation or using sets we've named in the past.)
b) A recursive definition for a set is called ambiguous if there is any element in the set that can be constructed from the given base cases and constructors in more than one way. ${ }^{1}$ Prove the above definition for $S$ is ambiguous.
c) Is it possible to define a recursive function $f: S \rightarrow \mathbb{N}$ which counts how many constructor steps were used to produce a given element of $S$ ? Why or why not? (For example, we might want $f(1)=0$ because 1 is in the base case so it looks like it doesn't use any applications of the constructor step.)
d) Come up with a new unambiguous recursive definition for the same set $S$. ${ }^{2}$

Problem 2. Consider a set $S$ defined recursively: $-2 \in S$, and if $x \in S$ then $2 x \in S$ and $x^{2}-1 \in S$. You may use without proof that every element of $S$ is an integer.
a) Prove $5 \notin S$.
b) Prove $\forall y \in S(|y| \geq 2)$ by structural induction.
c) Prove that for every $y \in S$, if $y<0$ then $y$ is even. ${ }^{3}$
${ }^{1}$ Being ambiguous does not make a definition invalid, but it sometimes makes it less useful.
${ }^{2}$ Hint: You may want multiple base case elements instead of just 1.
${ }^{3}$ Hint: use the result from part (b).

## Problem 3.

a) Give a recursive definition for a function $\mathrm{rev}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ which reverses a binary string. For example, $\operatorname{rev}(001111)=$ 111100.
b) Prove by structural induction that $\operatorname{rev}(s t)=\operatorname{rev}(t) \operatorname{rev}(s)$.

Problem 4. Prove by structural induction: If $T$ is a binary tree, then for any labeling of $T^{\prime}$ s vertices using blue and orange such that the root is blue and every leaf is orange, there exists some blue vertex that has an orange child.

