Homework on Induction

Benjamin Cosman, Patrick Lin and Mahesh Viswanathan

Fall 2020

Problem 1. Solve Problem 5.16 parts (g)-(1) from our MCS textbook.
Problem 2. In each of the following problems from our MCS textbook, they present a bogus proof and you have to find the flaw. Note that what they call "strong induction" is just what we've been calling "induction". Also, they use a slightly different template where instead of assuming a property holds from 0 through $k-1$ and then proving it for k, they assume it holds for 0 through n and then prove it holds for $n+1$. This is an entirely equivalent way of formulating an inductive proof (just consider our $k-1$ to be their n); the flaw is elsewhere.
a) Solve Problem 5.22
b) Solve Problem 5.26

Problem 3. n !, read as " n factorial", is defined on positive integers as $1!=1$, and for any larger $n, n!=n \cdot(n-1)!$. So for example, $3!=3 \cdot 2!=3 \cdot 2 \cdot 1!=3 \cdot 2 \cdot 1=6$. Pick an appropriate z (your choice), and then prove (by induction) that for every $n \geq z, 2^{n}<n!.^{1}$

Problem 4. A summation adds up the given function for each value in the range shown on the large sigma - for example,

$$
\sum_{i=1}^{n} i^{2}
$$

just means

$$
1^{2}+2^{2}+\ldots+n^{2}
$$

Prove by induction that for integer $n \geq 1$,

$$
\sum_{i=1}^{n} \frac{1}{(2 i+1)(2 i-1)}=\frac{n}{2 n+1}
$$

Problem 5. A rectangular chocolate bar is divided into x rows of y squares each. You can break a bar between any two rows or two columns to get two smaller rectangular bars. For example, a 3 by 6 bar could be broken to get a 1 by 6 bar and a 2 by 6 bar. How many breaks total does it take to break the initial bar all the way down into ($x y$) 1 by 1 bars? ${ }^{2}$ (For example, an initial 2 by 2 bar takes 3 breaks.) Prove your answer by induction. ${ }^{3}$
${ }^{1}$ Hint: first figure out an appropriate z by playing around with several small values for n

[^0]
[^0]: ${ }^{2}$ Hint: Even though you will prove your answer using induction, it is probably easiest to discover the answer by just playing around with small examples. ${ }^{3}$ Hint: Proceed by induction on the total number of squares in the bar.

