Homework on Cardinality

Benjamin Cosman, Patrick Lin and Mahesh Viswanathan

Fall 2020

Problem 1. For each of the following sets, determine if it is finite, infinite but countable, or uncountable. There is no need to prove your result.

- (a) $\mathcal{P}(\mathbb{Q})$ where \mathbb{Q} is the set of rational numbers
- (b) $\{x \in \mathbb{R} \mid x^2 \le 0\}$
- (c) $\{3n \mid n \in \mathbb{N}\}$
- (d) $\{n \in \mathbb{N} \mid n^2 = n^3\}$
- (e) **R**

(f) $A \cap B$, where *A* and *B* are countable sets.

Problem 2. Recall that $\mathbb{E} = \{2n \mid n \in \mathbb{N}\}$ is the set of even natural numbers. Let $Sq = \{n^2 \mid n \in \mathbb{N}\}$ be the set of perfect square natural numbers. Show that $|\mathbb{E}| = |Sq|$ by describing a bijective function between the sets and proving your function to be bijective.

Problem 3. Prove that $D = \{(m, n) \in \mathbb{N} \times \mathbb{N} \mid m \leq n\}$ and $\mathbb{N} \times \mathbb{N}$ have the same cardinality.

Problem 4. Recall that the interval $(0,1) = \{r \in \mathbb{R} \mid 0 < r < 1\}$ and $[0,1) = \{r \in \mathbb{R} \mid 0 \le r < 1\}$. Prove that |(0,1)| = |[0,1)|. *Hint:* It is difficult to find a bijective function between these sets. Use the Cantor-Schröder-Bernstein Theorem, Proposition 5 from notes, and Proposition 11 from notes/Problem 3 in worksheet.

Problem 5. Suppose *A*, *B* are infinite sets that are countable. Prove that

- (a) $A \times B$ is countable. *Hint*: Consider showing $|A \times B| = |\mathbb{N} \times \mathbb{N}|$.
- (b) If *A* and *B* are disjoint (i.e., *A* ∩ *B* = Ø) then *A* ∪ *B* is countable.
 Hint: Consider adapting the proof that shows |ℤ| = |ℕ|.

Based on part (b) above and the fact that \mathbb{R} are uncountable ¹, what can you conclude about the cardinality of the irrational numbers. Is it countable or uncountable?

Problem 6. Recall that $(0, 1) = \{x \in \mathbb{R} \mid 0 < x < 1\}$. Also $(0, \infty) = \{x \in \mathbb{R} \mid 0 < x\}$.

(a) Prove that $h: (0, \infty) \to (0, 1)$ defined as $h(x) = \frac{x}{x+1}$ is a bijection. Thus $|(0, 1)| = |(0, \infty)|$. ¹ This was not proved in class. One needs to use diagonalization to prove this.

(b) Prove that |R| = |(0,1)|. *Hint:* Can you adapt the bijection in part (a) to map non-negative numbers to [¹/₂, 1) and negative numbers to (0, ¹/₂)?