Homework on Proofs

Benjamin Cosman, Patrick Lin and Mahesh Viswanathan
Fall 2020

Problem 1. A positive integer k (i.e., $k \geq 1$) is said to be a perfect square if there is a positive integer i such that $k=i^{2}$. Prove that for any positive integer n, if n is a perfect square then $n+2$ is not a perfect square.

Problem 2. Prove that for any real number x, if $\frac{2 x+1}{x+1}$ is rational then x is rational.

Problem 3. Let p, q be real numbers such that $q \neq 2$. Prove that if $\frac{2 p+1}{q-2}$ is irrational then either p or q is irrational.

Problem 4. Prove that for any real number $x,|x+3|-x \geq 3$.
Problem 5. An exploration of alternating quantifiers.
a) Prove that, depending on the definition of $P, \exists x \forall y P(x, y)$ and $\forall y \exists x P(x, y)$ may not have the same truth value. ${ }^{12}$
b) Prove that, regardless of the definition of $P,[\exists x \forall y P(x, y)] \rightarrow$ $[\forall y \exists x P(x, y)]$

Problem 6. Prove that $\sqrt{2}+\sqrt{3}<\sqrt{11} .3$
Problem 7. Prove that $\sqrt{2}+\sqrt{3}$ is irrational.

[^0]
[^0]: ${ }^{1}$ A predicate with multiple arguments works just like our one-argument predicates - for example $P(x, y)$ might be defined as " $x y=x+1$ ", in which case $P(1,2)$ is true but $P(4,4)$ and $P(2,1)$ are false.
 ${ }^{2} \exists x \forall y P(x, y)$ is parsed as $\exists x(\forall y(P(x, y)))$
 ${ }^{3}$ Don't use a calculator! We expect a proof that relies on the algebraic properties of numbers and square roots.

