Homework on Summations and Recurrences Benjamin Cosman, Patrick Lin and Mahesh Viswanathan Fall 2020

Problem 1 (Infinite geometric series). For an infinite sequence

Prove that for |r| < 1, $\sum_{i=0}^{\infty} a_i = \lim_{n \to \infty} \sum_{i=0}^n a_i$. ¹ Prove that for |r| < 1, $\sum_{i=0}^{\infty} ar^i = \frac{a}{1-r}$.

¹ Yes, that is a limit. Calculus is a prerequisite for this course :)

Problem 2 (Arithmetico-Geometric Series).

a) Compute a closed form for
$$\sum_{i=1}^{n} ix^{i}$$
.²

b) Prove that if
$$|x| < 1$$
, $\sum_{i=0}^{\infty} ix^i = \frac{x}{(1-x)^2}$. ³

² Hint: Set $S = \sum_{i=1}^{n} ix^{i}$, then compute (1-x)S.

³ See Problem 1 for the definition of an infinite sum.

Problem 3 (Rolling down the river). Compute a closed form for the following recurrence, defined over non-negative numbers.

$$J(n) = \begin{cases} 1 & \text{if } n \in \{0, 1\} \\ \frac{1}{2}J(n-2) + 1 & \text{if } n > 1 \end{cases}.$$

Problem 4 (Reoccuring recurrences). Using the recursion tree method, compute closed forms for the following recurrences, both of which are defined over non-negative powers of two (i.e., 2^i for i > 0).

i)
$$B(n) = \begin{cases} 1 & \text{if } n = 1\\ 2B(\frac{n}{2}) + n & \text{otherwise} \end{cases}$$

ii)
$$C(n) = \begin{cases} 1 & \text{if } n = 1\\ 2C(\frac{n}{2}) + n^2 & \text{otherwise} \end{cases}$$