Homework on Summations and Recurrences

Benjamin Cosman, Patrick Lin and Mahesh Viswanathan
Fall 2020

Problem 1 (Infinite geometric series). For an infinite sequence
a_{0}, a_{1}, \ldots, define $\sum_{i=0}^{\infty} a_{i}=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} a_{i} .{ }^{1}$
Prove that for $|r|<1, \sum_{i=0}^{\infty} a r^{i}=\frac{a}{1-r}$.

Problem 2 (Arithmetico-Geometric Series).
a) Compute a closed form for $\sum_{i=1}^{n} i x^{i} .^{2}$
b) Prove that if $|x|<1, \sum_{i=0}^{\infty} i x^{i}=\frac{x}{(1-x)^{2}} .{ }^{3}$
${ }^{1}$ Yes, that is a limit. Calculus is a prerequisite for this course :)
${ }^{2}$ Hint: Set $S=\sum_{i=1}^{n} i x^{i}$, then compute $(1-x) S$.
${ }^{3}$ See Problem 1 for the definition of an infinite sum.

Problem 3 (Rolling down the river). Compute a closed form for the following recurrence, defined over non-negative numbers.

$$
J(n)= \begin{cases}1 & \text { if } n \in\{0,1\} \\ \frac{1}{2} J(n-2)+1 & \text { if } n>1\end{cases}
$$

Problem 4 (Reoccuring recurrences). Using the recursion tree method, compute closed forms for the following recurrences, both of which are defined over non-negative powers of two (i.e., 2^{i} for $i>0$).
i) $B(n)= \begin{cases}1 & \text { if } n=1 \\ 2 B\left(\frac{n}{2}\right)+n & \text { otherwise }\end{cases}$
ii) $C(n)= \begin{cases}1 & \text { if } n=1 \\ 2 C\left(\frac{n}{2}\right)+n^{2} & \text { otherwise }\end{cases}$

