Marginal Probability Distributions (discrete)

For a discrete joint PDF, there are marginal distributions for each random variable, formed by summing the joint PMF over the other variable.

$$f_X(x) = \sum_{y} f_{XY}(x, y)$$
$$f_Y(y) = \sum_{x} f_{XY}(x, y)$$

Called marginal because they are written in the margins

y = number of	x = nui			
times city name	sigr	nal stren	gth	
is stated	1	2	3	$ f_{Y}(y) =$
1	0.01	0.02	0.25	0.28
2	0.02	0.03	0.20	0.25
3	0.02	0.10	0.05	0.17
4	0.15	0.10	0.05	0.30
$f_X(x) =$	0.20	0.25	0.55	1.00

Figure 5-6 From the prior example, the joint PMF is shown in green while the two marginal PMFs are shown in purple.

Conditional Probability Distributions

Recall that
$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$P(Y=y \mid X=x)=P(X=x,Y=y)/P(X=x)=$$

$$=f(x,y)/f_X(x)$$

From Example 5-1

$$P(Y=1|X=3) = 0.25/0.55 = 0.455$$

$$P(Y=2|X=3) = 0.20/0.55 = 0.364$$

$$P(Y=3|X=3) = 0.05/0.55 = 0.091$$

$$P(Y=4|X=3) = 0.05/0.55 = 0.091$$

$$Sum = 1.00$$

y = number of times city name	x = nui sigr			
is stated	1	2	3	$f_{Y}(y) =$
1	0.01	0.02	0.25	0.28
2	0.02	0.03	0.20	0.25
3	0.02	0.10	0.05	0.17
4	0.15	0.10	0.05	0.30
$f_X(x) =$	0.20	0.25	0.55	1.00

Note that there are 12 probabilities conditional on *X*, and 12 more probabilities conditional upon *Y*.

X and Y are Bernoulli variables

	Y=0	Y=1
X=0	2/6	1/6
X=1	2/6	1/6

What is the marginal $P_{Y}(Y=0)$?

A. 1/6

B. 2/6

C. 3/6

D. 4/6

E. I don't know

Get your i-clickers

X and Y are Bernoulli variables

	Y=0	Y=1
X=0	2/6	1/6
X=1	2/6	1/6

What is the conditional P(X=0|Y=1)?

A. 2/6

B. 1/2

C. 1/6

D. 4/6

E. I don't know

Get your i-clickers

Reminder

Statistically independent events

Always true: $P(A \cap B) = P(A \mid B) \cdot P(B) = P(B \mid A) \cdot P(A)$

Two events

Two events are **independent** if any one of the following equivalent statements is true:

- $(1) \quad P(A|B) = P(A)$
- $(2) \quad P(B|A) = P(B)$
- $(3) \quad P(A \cap B) = P(A)P(B)$

Multiple events

The events E_1, E_2, \ldots, E_n are independent if and only if for any subset of these events $E_{i_1}, E_{i_2}, \ldots, E_{i_k}$,

$$P(E_{i_1} \cap E_{i_2} \cap \cdots \cap E_{i_k}) = P(E_{i_1}) \times P(E_{i_2}) \times \cdots \times P(E_{i_k})$$

Independence of Random Variables X and Y

Random variable independence
means that knowledge of any of the
values of X does not change
probabilities of any of the values of Y

• Opposite: **Dependence** implies that some values of *X* influence the probability of some values of *Y*

Independence for Discrete Random Variables

- Remember independence of events (slide 13 lecture 4): Events are independent if any one of the three conditions are met:
 - 1) $P(A \mid B) = P(A \cap B)/P(B) = P(A)$ or
 - 2) $P(B|A) = P(A \cap B)/P(A) = P(B)$ or
 - 3) $P(A \cap B) = P(A) \cdot P(B)$
- Random variables independent if <u>all events</u>
 A that Y=y and B that X=x are independent if any one of these conditions is met:
 - 1) P(Y=y|X=x)=P(Y=y) for any x or
 - 2) P(X=x | Y=y)=P(X=x) for any y or
 - 3) $P(X=x, Y=y)=P(X=x)\cdot P(Y=y)$

for every pair x and y

X and Y are Bernoulli variables

	Y=0	Y=1
X=0	2/6	1/6
X=1	2/6	1/6

Are they independent?

- A. yes
 - B. no
- C. I don't know

X and Y are Bernoulli variables

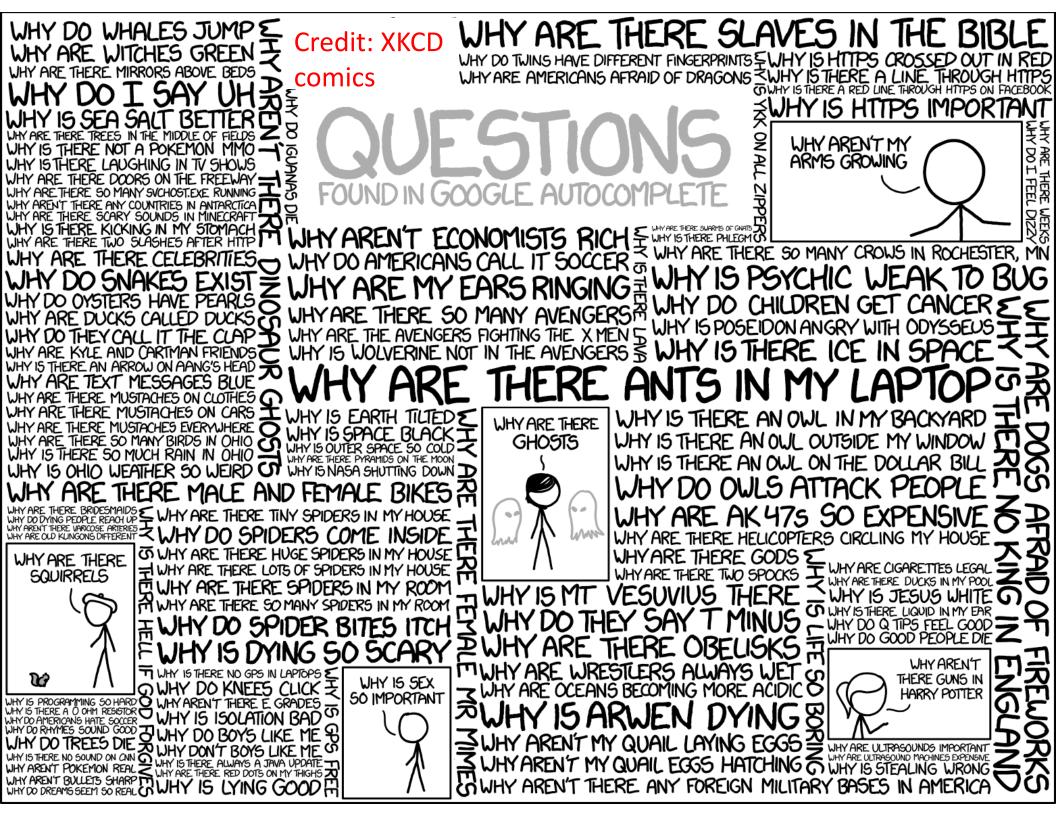
	Y=0	Y=1
X=0	1/2	0
X=1	0	1/2

Are they independent?

A. yes

B. no

C. I don't know



Joint Probability Density Function Defined

The joint probability density function for the continuous random variables X and Y, denotes as $f_{XY}(x,y)$, satisfies the following properties:

(1)
$$f_{XY}(x,y) \ge 0$$
 for all x,y

(2)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) dx dy = 1$$

(3)
$$P((X,Y) \subset R) = \iint\limits_R f_{XY}(x,y)dxdy$$
 (5-2)

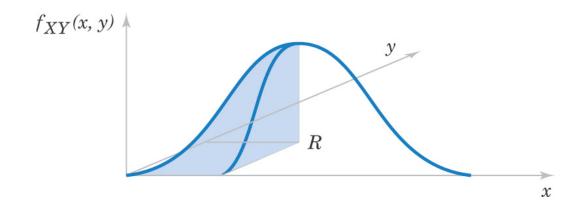


Figure 5-2 Joint probability density function for the random variables X and Y. Probability that (X, Y) is in the region R is determined by the volume of $f_{XY}(x,y)$ over the region R.

Joint Probability Density Function Graph

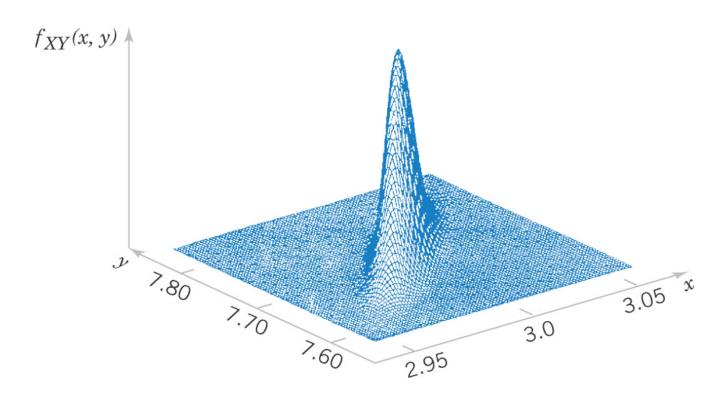


Figure 5-3 Joint probability density function for the continuous random variables *X* and *Y* of expression levels of two different genes. Note the asymmetric, narrow ridge shape of the PDF – indicating that small values in the *X* dimension are more likely to occur when small values in the *Y* dimension occur.

Marginal Probability Distributions (continuous)

- Rather than summing a discrete joint PMF, we integrate a continuous joint PDF.
- The marginal PDFs are used to make probability statements about one variable.
- If the joint probability density function of random variables X and Y is $f_{XY}(x,y)$, the marginal probability density functions of X and Y are:

$$f_X(x) = \int_{y} f_{XY}(x, y) \, dy$$

$$f_X(x) = \sum_{y} f_{XY}(x, y)$$

$$f_Y(y) = \int_{x} f_{XY}(x, y) \, dx$$
(5-3)
$$f_Y(y) = \sum_{y} f_{XY}(x, y)$$

Conditional Probability Density Function Defined

Given continuous random variables X and Y with joint probability density function $f_{XY}(x,y)$, the conditional probability density function of Y given X=x is

$$f_{Y|X}(y) = \frac{f_{XY}(x,y)}{f_X(x)} = \frac{f_{XY}(x,y)}{\int_{y} f_{XY}(x,y) dy} \text{ if } f_X(x) > 0$$
 (5-4)

which satisfies the following properties:

(1) $f_{Y|x}(y) \ge 0$

$$(2) \int f_{Y|x}(y)dy = 1$$

(3)
$$P(Y \subset B | X = x) = \int_B f_{Y|x}(y) dy$$
 for any set B in the range of Y

Compare to discrete: $P(Y=y|X=x)=f_{XY}(x,y)/f_X(x)$

Conditional Probability Distributions

- Conditional probability distributions can be developed for multiple random variables by extension of the ideas used for two random variables.
- Suppose p = 5 and we wish to find the distribution of X_1 , X_2 and X_3 conditional on $X_4 = x_4$ and $X_5 = x_5$.

$$f_{X_1X_2X_3|x_4x_5}(x_1, x_2, x_3) = \frac{f_{X_1X_2X_3X_4X_5}(x_1, x_2, x_3, x_4, x_5)}{f_{X_4X_5}(x_4, x_5)}$$
 for $f_{X_4X_5}(x_4, x_5) > 0$.

Independence for Continuous Random Variables

For random variables *X* and *Y*, if any one of the following properties is true, the others are also true. Then *X* and *Y* are independent.

```
(1) f_{XY}(x,y) = f_X(x) \cdot f_Y(y)

(2) f_{Y|X}(y) = f_Y(y) for all x and y with f_X(x) > 0

(3) f_{X|y}(y) = f_X(x) for all x and y with f_Y(y) > 0

(4) P(X \subset A, Y \subset B) = P(X \subset A) \cdot P(Y \subset B) for any sets A and B in the range of X and Y, respectively. (5–7)
```

```
P(Y=y|X=x)=P(Y=y) for any x or P(X=x|Y=y)=P(X=x) for any y or P(X=x, Y=y)=P(X=x)\cdot P(Y=y) for any x and y
```

Covariation, Correlations

Quick and dirty check for linear (in)dependence between variables

Covariance - 1 humber to measure dependance Between random variables Cov(X,Y) or Bxy Bxy = E[(X-Mx), (Y-My) = = E(X,Y) - Mx - My• Var(X) = Cov(X,X). If X2 y ove independent $C'ov(x, y) = E[x-rx] \cdot E[y-ry] = 0$

 $= \infty < Cov(X,Y) < +\infty$ Can be negative.

Covariance Defined

Covariance is a number quantifying the average *linear* dependence between two random variables.

The covariance between the random variables X and Y, denoted as cov(X,Y) or σ_{XY} is

$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - \mu_X \mu_Y$$

Montgomery, Runger 5th edition Eq. (5–14)

The units of σ_{XY} are the units of X times the units of Y.

Unlike the range of the variance, covariance can be negative: $-\infty < \sigma_{XY} < \infty$.

Covariance and PMF tables

y = number of times city	<pre>x = number of bars of signal strength</pre>		
name is stated	1 2 3		
1	0.01	0.02	0.25
2	0.02	0.03	0.20
3	0.02	0.10	0.05
4	0.15	0.10	0.05

The probability distribution of Example 5-1 is shown.

By inspection, note that the larger probabilities occur as *X* and *Y* move in opposite directions. This indicates a negative covariance.

Covariance and Scatter Patterns

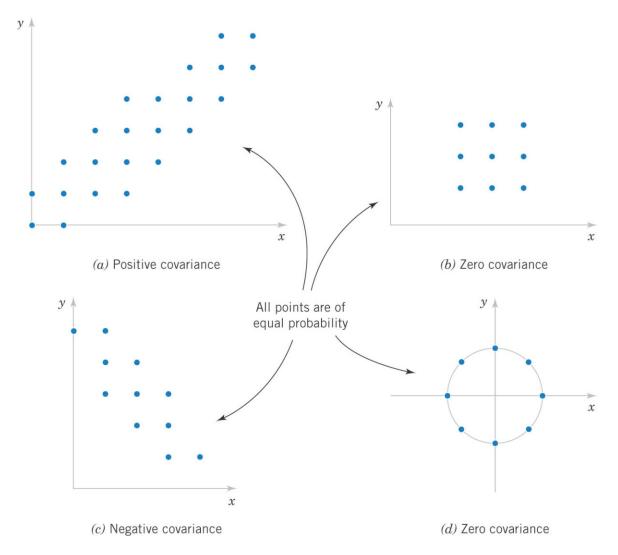


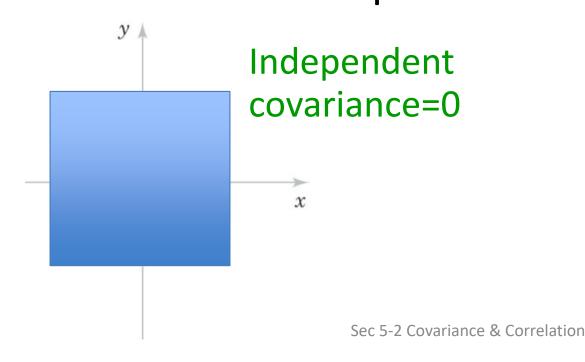
Figure 5-13 Joint probability distributions and the sign of cov(X, Y). Note that covariance is a measure of linear relationship. Variables with non-zero covariance are correlated.

Independence Implies $\sigma=\rho=0$ but not vice versa

If X and Y are independent random variables,

$$\sigma_{XY} = \rho_{XY} = 0 \tag{5-17}$$

• $\rho_{XY} = 0$ is necessary, but not a sufficient condition for independence.



Correlation is "normalized covariance"

Also called:

Pearson correlation coefficient

 $\rho_{XY} = \sigma_{XY} / \sigma_X \sigma_Y$ is the covariance normalized to be $-1 \le \rho_{XY} \le 1$

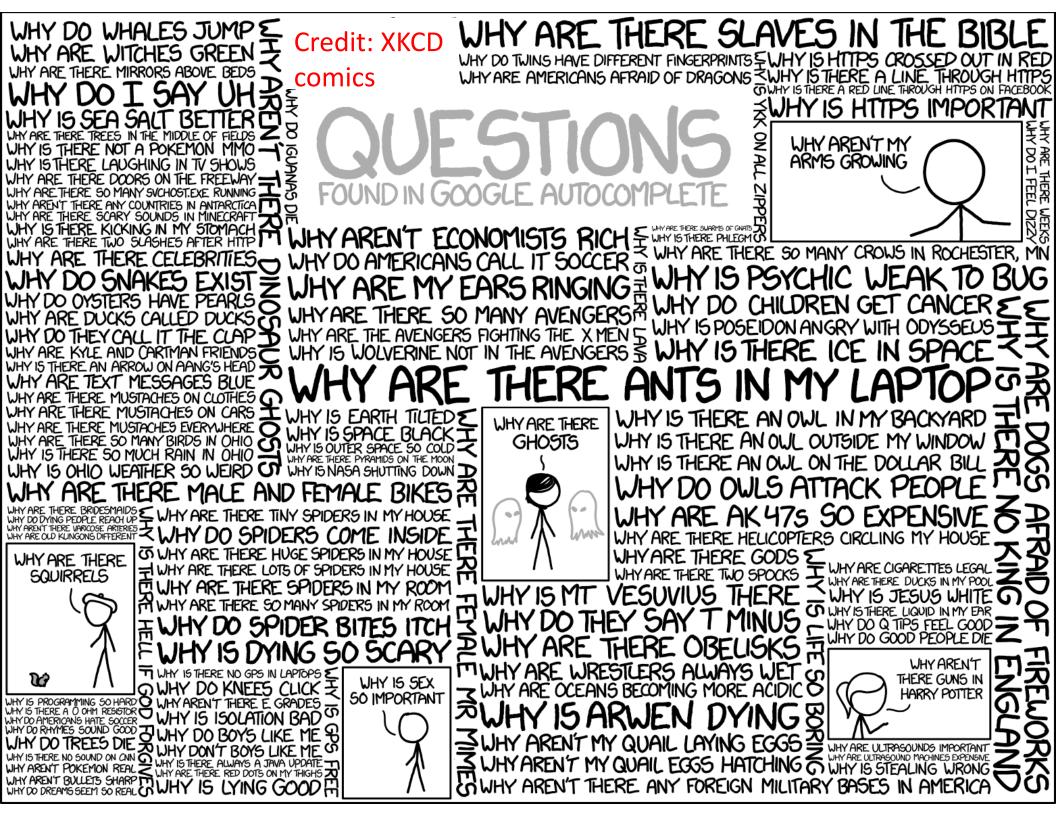
Karl Pearson (1852–1936) English mathematician and biostatistician

Prove that
$$f_{xy}$$
 is in $[-1,1]$
 $Z_x = \frac{x - p_x}{6x}$; $Z_y = \frac{y - p_y}{6y}$
 $0 \le E((Z_x - Z_y)^2) = E(Z_x^2) + E(Z_y^2) - 2E(Z_x \cdot Z_y) = 2 - 2\frac{1}{6x^3} E((x - p_x)(y - p_1)) = 2 - 2 \cdot p_{xy}$
 $0 \le E((Z_x + Z_y)^2) = E(Z_x^2) + E(Z_y^2) + 2E(Z_x \cdot Z_y) = 2 + 2 \cdot p_{xy}$
 $\Rightarrow D_{xy} \ge -1$

Spearman rank correlation

- Pearson correlation tests for linear relationship between X and Y
- Unlikely for variables with broad distributions

 non-linear effects dominate
- <u>Spearman correlation</u> tests for any <u>monotonic relationship</u> between X and Y
- Calculate ranks (1 to n), $r_X(i)$ and $r_Y(i)$ of variables in both samples. Calculate Pearson correlation between ranks: Spearman(X,Y) = Pearson(r_X , r_Y)
- Ties: convert to fractions, e.g. tie for 6s and 7s place both get 6.5. This can lead to artefacts.
- If lots of ties: use Kendall rank correlation (Kendall tau)

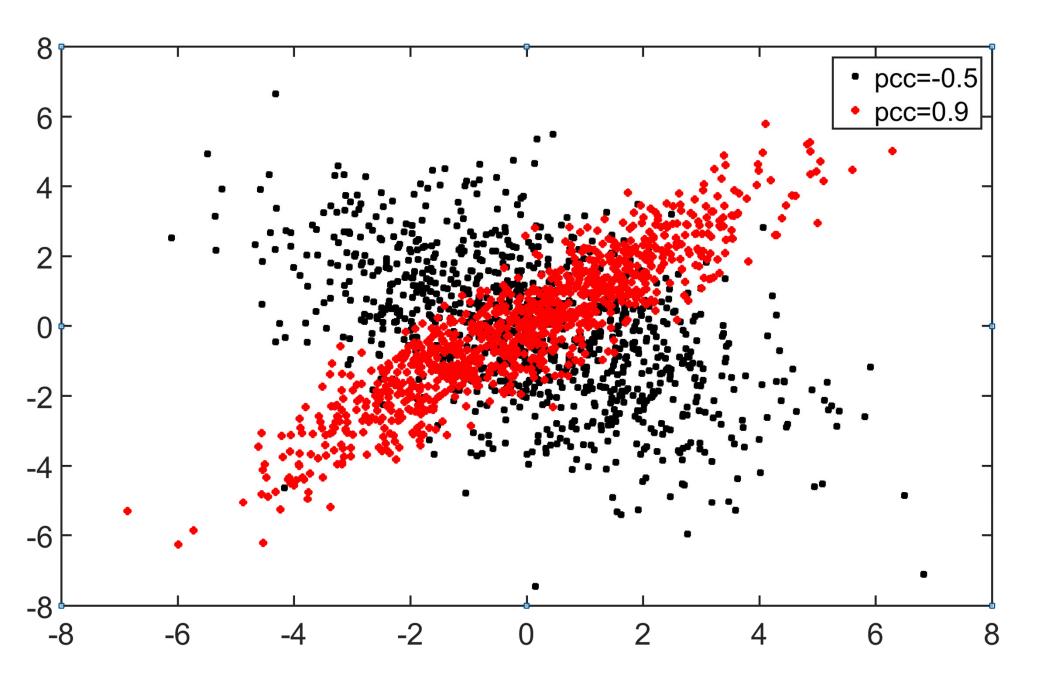


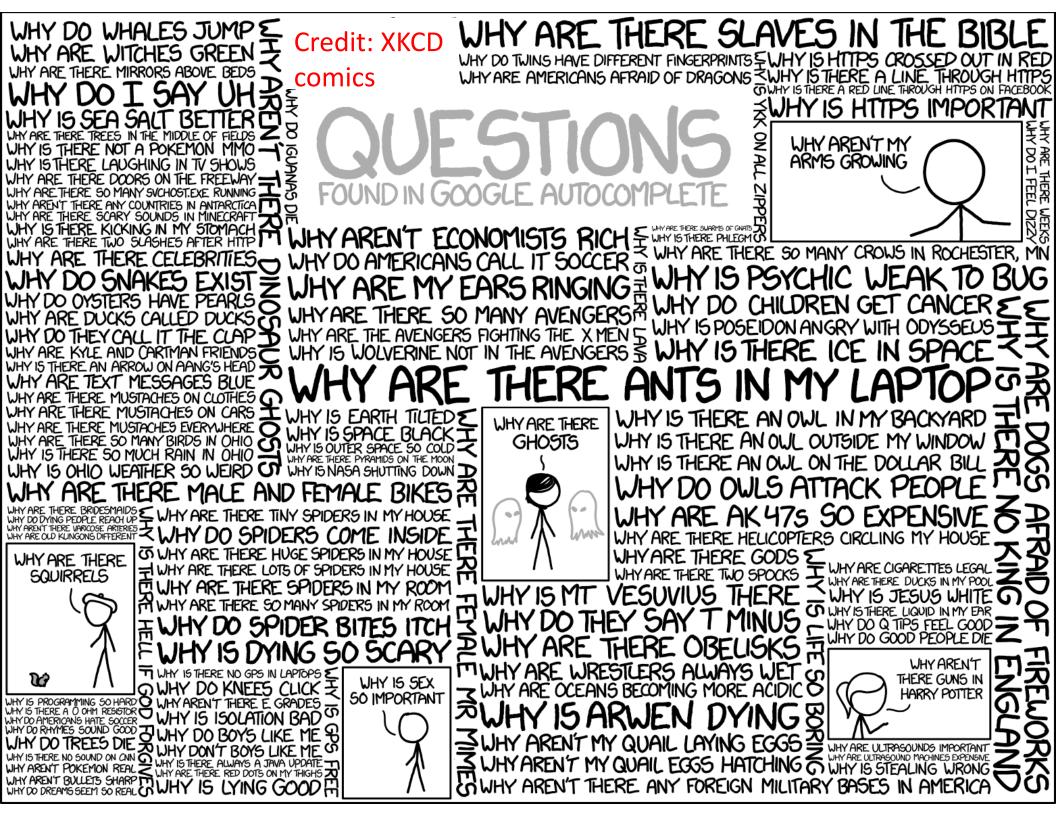
Matlab exercise: Correlation/Covariation

- Generate a sample with Stats=100,000 of two Gaussian random variables r1 and r2 which have mean 0 and standard deviation 2 and are:
 - Uncorrelated
 - Correlated with correlation coefficient 0.9
 - Correlated with correlation coefficient -0.5
 - Trick: first make uncorrelated r1 and r2. Then make anew variable: r1mix=mix.*r2+(1-mix.^2)^0.5.*r1; where mix= corr. coeff.
- For each value of mix calculate covariance and correlation coefficient between r1mix and r2
- In each case make a scatter plot: plot(r1mix,r2,'k.');

Matlab exercise: Correlation/Covariation

```
1. Stats=100000;
2. r1=2.*randn(Stats,1);
3. r2=2.*randn(Stats,1);
4. disp('Covariance matrix='); disp(cov(r1,r2));
5. disp('Correlation=');disp(corr(r1,r2));
6. figure; plot(r1,r2,'k.');
7. mix=0.9; %Mixes r2 to r1 but keeps same variance
8. r1mix=mix.*r2+sqrt(1-mix.^2).*r1;
9. disp('Covariance matrix='); disp(cov(r1mix,r2));
10. disp('Correlation='); disp(corr(r1mix,r2));
11. figure; plot(r1mix,r2,'k.');
12. mix=-0.5; %REDO LINES 8-11
```





Let's work with real cancer data!

- Data from Wolberg, Street, and Mangasarian (1994)
- Fine-needle aspirates = biopsy for breast cancer
- Black dots cell nuclei. Irregular shapes/sizes may mean cancer
- Statistics of all cells in the image
- 212 cancer patients and 357 healthy individuals (column 1)
- 30 other properties (see table)

Variable	Mean	S.Error	Extreme
Radius (average distance from the center)	Col 2	Col 12	Col 22
Texture (standard deviation of gray-scale values)	Col 3	Col 13	Col 23
Perimeter	Col 4	Col 14	Col 24
Area	Col 5	Col 15	Col 25
Smoothness (local variation in radius lengths)	Col 6	Col 16	Col 26
Compactness (perimeter ² / area - 1.0)	Col 7	Col 17	Col 27
Concavity (severity of concave portions of the contour)	Col 8	Col 18	Col 28
Concave points (number of concave portions of the contour)	Col 9	Col 19	Col 29
Symmetry	Col 10	Col 20	Col 30
Fractal dimension ("coastline approximation" - 1)	Col 11	Col 21	Col 31

Matlab exercise #2

- Download cancer data in cancer_wdbc.mat
- Data in the file cancerwdbc.mat (569x30). First 357
 patients are healthy. The remaining 569-357=212 patients
 have cancer.
- Make scatter plots of radius vs perimeter and texture vs radius.
- Calculate Pearson and Spearman correlations in both cases
- Calculate the correlation matrix of all-against-all variables: there are 30*29/2=435 correlations.
 Hint: corr_mat=corr(cancerwdbc);
- Plot the histogram of these 435 correlation coefficients.
 Hint: use [i,j,v]=find(corr_mat); then find all i>j and analyze v evaluated on this subset of 435 matrix elements

