Binomial Distribution

- Binomially-distributed random variable X equals sum (number of successes) of n independent Bernoulli trials
- The probability mass function is: $f(x) = C_x^n p^x (1-p)^{n-x} \text{ for } x = 0, 1, ... n \quad (3-7)$
- Based on the binomial expansion:

Binomial mean, variance and standard deviation

Let X be a binomial random variable with parameters p and n

- Mean:
- μ=np
- Variance:
- $\sigma^2 = V(X) = np(1-p)$
- Standard deviation:
- $\sigma = \sqrt{np(1-p)}$
- Standard deviation to mean ratio

$$\sigma/\mu = \sqrt{np(1-p)}/np = \frac{\sqrt{(1-p)}/p}{\sqrt{n}}$$

Poisson Distribution

• Limit of the binomial distribution when -n, the number of attempts, is very large -p, the probability of success is very small $-E(X)=np=\lambda$ is O(1)

The annual numbers of deaths from horse kicks in 14 Prussian army corps between 1875 and 1894

Number deaths	of Observed frequency	Expected frequency		
0	144	139		
1	91	97		
2	32	34		
3	11	8		
4	2	1		
5 and over	0	0		
Total	280	280		

From von Bortkiewicz 1898

Siméon Denis Poisson (1781–1840) French mathematician and physicist

Let
$$\lambda = np = E(x)$$
, so $p = \frac{\lambda}{n}$
 $P(X = x) = {n \choose x} p^x (1-p)^{n-x}$
 $= \frac{n(n-1)\dots(n-x+1)}{x!} \left(\frac{\lambda}{n}\right)^x \left(1-\frac{\lambda}{n}\right)^{n-x} \sim \frac{n^x}{x!} \left(\frac{\lambda}{n}\right)^x = \frac{\lambda^x}{x!};$
 $\sum_x \frac{\lambda^x}{x!} = e^{\lambda}.$

Normalization requires $\sum_{x} P(X = x) = 1$. Thus $P(X = x) = \frac{\lambda^{x}}{x!}e^{-\lambda}$

Poisson Mean & Variance

If X is a Poisson random variable, then:

- Mean: $\mu = E(X) = \lambda \implies \square \square \square$
- Variance: $\sigma^2 = V(X) = \lambda n \cdot p$ (it was Standard deviation: $\sigma = \lambda^{1/2}$
- Standard deviation: $\sigma = \lambda^{1/2}$

Note: Variance = Mean Note: Standard deviation/Mean = $\lambda^{-1/2}$ decreases with λ

Matlab exercise: Poisson distribution

- Generate a sample of size 100,000 for Poissondistributed random variable X with $\lambda = 2$
- Plot the <u>approximation</u> to the Probability Mass Function based on <u>this sample</u>
- Calculate the mean and variance of <u>this</u> <u>sample</u> and compare it to theoretical calculations:

 $E[X] = \lambda$ and $V[X] = \lambda$

Matlab exercise: Poisson distribution

- Stats=100000; lambda=2;
- r2=random('Poisson',lambda,Stats,1);
- mu_p=sum(r2)./Stats;
- disp(mu_p);
- var_p=sum((r2-mu_p).^2)./Stats;
- disp(var_p);
- std_p=sqrt(var_p)
- [a,b]=hist(r2, 0:max(r2));
- p_p=a./sum(a);
- figure; stem(b,p_p);
- figure; semilogy(b,p_p,'ko-');

Poisson Distribution in Genome Assembly Cost per Raw Megabase of DNA Sequence

Poisson Example: Genome Assembly

- Goal: DNA sequence of the entire genome of an organism
- Problem: Sequencers generate short reads of random portions of a genome
- Solution: assemble genome from short reads using computers
- Whole Genome Shogun Assembly pioneered by Craig Venter in 1990s
- The human genome was jointly announced in 2001 by the Human Genome Project (public) and Celera Genomics (Craig Venter's company)

Short Reads assemble into Contigs

Figure 5.1.

Current sequencing technologies

Technology	Read Length	Error Rate	Cost per Gbase
Illumina NovaSeq	75-500 bp	~0.1%	\$5-\$150
BGI DNBSEQ	35-300 bp	~0.1%	\$5-\$120
Ion Torrent	200-600 bp	~0.5%	\$70-\$1000
PacBio	<mark>10,000-25,000 bp</mark>	<mark>13%</mark>	<mark>\$7-\$40</mark>
<mark>Oxford</mark> Nanopore	<mark>10,000-100,000+ bp</mark>	<mark>3-10%</mark>	<mark>\$30-\$60</mark>

MinION, a palm-sized gene sequencer made by UK-based Oxford Nanopore Technologies

Promise of Genomics

Drew Sheneman, New Jersey -- The Newark Star Ledger, E-mail Drew.

I think I found the corner piece!

How many short reads do we need? Input Output Low coverage: A few pieces to many contigs, assemble many gaps **High coverage:** a few contigs, a many pieces to assemble few gaps

Genome Assembly

Whole-genome "shotgun" sequencing starts by copying and fragmenting the DNA

("Shotgun" refers to the random fragmentation of the whole genome; like it was fired from a shotgun)

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTT 35bp

- Copy GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTT
- by GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTT
- PCR: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTT GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTT

Fragment:GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTGGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTTGGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTGGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Courtesy of <u>Ben Langmead</u>. Used with permission.

Assembly

Assume sequencing produces such a large # fragments that almost all genome positions are *covered* by manyfragments...

...but we don't know what came from where

Reconstruct this CTAGGCCCTCAATTTTT GGCGTCTATATCT CTCTAGGCCCTCAATTTTT TCTATATCTCGGCTCTAGG GGCTCTAGGCCCTCATTTTT CTCGGCTCTAGGCCCTCATTTTT TATCTCGACTCTAGGCCCTCA GGCGTCGATATCT TATCTCGACTCTAGGCC GGCGTCTATATCTCG

From these

→ GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTT

Courtesy of <u>Ben Langmead</u>. Used with permission.

Assembly

Overlaps between short reads help to put them together

CTAGGCCCTCAATTTTT CTCTAGGCCCTCAATTTTT GGCTCTAGGCCCTCATTTTT CTCGGCTCTAGGCCCTCATTTTT TATCTCGACTCTAGGCCCTCA TATCTCGACTCTAGGCC TCTATATCTCGGCTCTAGG GGCGTCTATATCTCG GGCGTCTATATCT GGCGTCTATATCT GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTT 35 nucleotides

Courtesy of <u>Ben Langmead</u>. Used with permission.

Where is the Poisson?

- G genome length (in bp)
- L short read average length
- N number of short read sequenced
- λ sequencing coverage redundancy = LN/G
- *x* number of short reads covering a given site on the genome

$$P(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

Poisson as a limit of Binomial: For a given site on the genome for each short read Prob(site covered): p=L/G is very small. Number of attempts (short reads): N is very large. Their product (sequencing redundancy): $\lambda = NL/G$ is O(1).

What fraction of the genome is missing?

What fraction of genome is covered?

 Coverage: λ=NL/G, X – random variable equal to the number of times a given site is covered by short reads. Poisson: P(X=x)= λ[×]exp(- λ)/x! P(X=0)=exp(- λ), P(X>0)=1- exp(- λ)

• Total length covered: $G^*[1 - exp(-\lambda)]$

λ	2	4	6	8	10	12
Mean proportion of genome covered	.864665	.981684	.997521	.999665	.999955	.9999994

Table 5.1. The mean proportion of the genome covered for different values of λ

G

If DNA was a random chain with $p_A = p_C = p_G = p_T = 1/4$

L_{ov}~16-20 would be enough

 $2 \cdot G \cdot 4^{-Lov} = 2 \cdot 3x10^9 \cdot 4^{-16} = 1.4$

 $2 \cdot 3x10^9 \cdot 4^{-20} = 0.0055 << 1$

G

P(short read can be extended by another short read)= $\frac{L - L_o}{G} = p$ P(short read cannot be extended by any short reads)= $e^{-pN} \approx Ne^{-\lambda}$

number of contigs=
$$Ne^{-pN} \approx Ne^{-\lambda}$$

How many contigs?

- A given short read is the right end of a contig if and only if no left ends of other short reads fall within it.
- The left end of another short read has the probability p=(L-1)/G to fall within a given read. There are N-1 other reads. Hence the expected number of left ends inside a given shot read is $p \cdot (N-1)=(N-1) \cdot (L-1)/G \approx \lambda$
- If significant overlap required to merge two short reads is L_{ov} , modified λ is given by $(N-1) \cdot (L-L_{ov})/G$
- Probability that no left ends fall inside a short read is $exp(-\lambda)$. Thus the Number of contigs is $N_{contias} = Ne^{-\lambda}$:

λ	0.5	0.75	1	1.5	2	3	4	5	6	7
Mean number of contigs	60.7	70.8	73.6	66.9	54.1	29.9	14.7	6.7	3.0	1.3

Table 5.2. The mean number of contigs for different levels of coverage, with G = 100,000 and L = 500.

Average length of a contig?

- Length of a genome covered: $G_{covered} = G \cdot P(X > 0) = G \cdot (1 - exp(-\lambda))$
- Number of contigs $N_{contigs} = N \cdot e^{-\lambda}$
- Average length of a contig =

$$=\Sigma_i L_i / N_{contigs} = G_{covered} / N_{contigs} =$$

 $G \cdot (1 - \exp(-\lambda)) / N \cdot e^{-\lambda} = L \cdot (1 - \exp(-\lambda)) / \lambda \cdot e^{-\lambda}$

λ	2	4	6	8	10
Mean contig size	1,600	6,700	33,500	186,000	1,100,000

Table 5.3. The mean contig size for different values of a for the case L = 500.