Binomial Distribution

- Binomially-distributed random variable *X* equals sum (number of successes) of n independent Bernoulli trials
- The probability mass function is: $f(x) = C_x^n p^x (1-p)^{n-x}$ for $x = 0,1,...n$ (3-7)
- Based on the binomial expansion:

Binomial mean, variance and standard deviation

Let *X* be a binomial random variable with parameters *p* and *n*

- Mean:

μ=np

- Variance:
- σ 2 $2 = V(X) = np(1-p)$
- Standard deviation:

σ ⁼*np*(1 −*p*)

- Standard deviation to mean ratio

$$
\sigma/\mu = \sqrt{np(1-p)}/np = \frac{\sqrt{(1-p)/p}}{\sqrt{n}}
$$

Poisson Distribution

• Limit of the binomial distribution when $\mathcal{L}_{\mathcal{A}}$, where $\mathcal{L}_{\mathcal{A}}$ is the set of the *n* , the number of attempts, is very large $\mathcal{L}_{\mathcal{A}}$, and the set of $\mathcal{L}_{\mathcal{A}}$ *p , the probability of success* is very small –*E(X)= n p =λ* is O(1)

The annual numbers of deaths from horse kicks in 14 Prussian army corps between 1875 and 1894

and physicist From von Bortkiewicz ¹⁸⁹⁸

Siméon Denis Poisson (1781–1840) French mathematician

Let
$$
\lambda = np = E(x)
$$
, so $p = \frac{\lambda}{n}$
\n
$$
P(X = x) = {n \choose x} p^{x} (1-p)^{n-x}
$$
\n
$$
= \frac{n(n-1)...(n-x+1)}{x!} \left(\frac{\lambda}{n}\right)^{x} \left(1-\frac{\lambda}{n}\right)^{n-x} \sim \frac{n^{x}}{x!} \left(\frac{\lambda}{n}\right)^{x} = \frac{\lambda^{x}}{x!};
$$
\n
$$
\sum_{x} \frac{\lambda^{x}}{x!} = e^{\lambda}.
$$
\nNormalization requires

\n
$$
\sum_{x} P(Y = x) = 1
$$

Normalization requires $\sum_{x} P(X = x) = 1$.
Thus $P(X = x) = \frac{\lambda^x}{x!} e^{-\lambda}$

Poisson Mean & Variance

If X is a Poisson random variable, then:

- Mean: $\mu = E(X) = \lambda$
- Variance: σ $2 = V(X) = λ$
- Standard deviation: $\sigma = \lambda^{1/2}$

Note: Variance = MeanNote: Standard deviation/Mean = λ ^{-1/2} decreases with λ

Matlab exercise: Poisson distribution

- Generate a sample of size 100,000 for Poissondistributed random variable X with λ =2
- Plot the **approximation** to the Probability Mass Function based on this sample
- Calculate the mean and variance of this sample and compare it to theoretical calculations:

E[X]= λ and V[X]= λ

Matlab exercise: Poisson distribution

- **Stats=100000; lambda=2;**
- **r2=random('Poisson',lambda,Stats,1);**
- •**mu_p=sum(r2)./Stats;**
- **disp(mu_p);**
- •**var_p=sum((r2-mu_p).^2)./Stats;**
- **disp(var_p);**
- **std_p=sqrt(var_p)**
- **[a,b]=hist(r2, 0:max(r2));**
- •**p_p=a./sum(a);**
- **figure; stem(b,p_p);**
- **figure; semilogy(b,p_p,'ko-');**

Poisson Distribution in Genome Assembly

Cost per Raw Megabase of DNA Sequence

Poisson Example: Genome Assembly

- Goal: DNA sequence of the entire genome of an organism
- Problem: Sequencers generate short reads of random portions of a genome
- Solution: assemble genome from short reads using computers
- Whole Genome Shogun Assembly pioneered by Craig Venter in 1990s
- The human genome was jointly announced in 2001 by the Human Genome Project (public) and Celera Genomics (Craig Venter's company)

Short Reads assemble into Contigs

Figure 5.1.

Current sequencing technologies

MinION, a palm-sized gene sequencer made by UK-based Oxford Nanopore Technologies

Promise of Genomics

Drew Sheneman, New Jersey -- The Newark Star Ledger, E-mail Drew.

I think I found the corner piece!

How many short reads do we need?**Input Output Low coverage:** A few pieces to many contigs, assemble many gaps **High coverage:** a few contigs, a many pieces to assemble few gaps

Genome Assembly

Whole-genome "shotgun" sequencing starts by copying and fragmenting the DNA

("Shotgun" refers to the random fragmentation of the whole genome; like it was fired from ashotgun)

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT 35bp

- **Copy** GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
- by GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
- PCR:GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTTGGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Fragment: GGCGTCTA TATCTCGG CTCTAGGCCCTC ATTTTTT GGC GTCTATAT CTCGGCTCTAGGCCCTCA GGCGTC TATATCT CGGCTCTAGGCCCT CATTTTTTGGCGTCTAT ATCTCGGCTCTAG GCCCTCA

Courtesy of Ben Langmead. Used with permission.

Assembly

Assume sequencing produces such ^a large # fragments that almost all genome positions are *covered* by manyfragments...

...but we don't know what came fromwhere

Reconstruct this

CTAGGCCCTCAATTTTTGGCGTCTATATCTCTCTAGGCCCTCAATTTTTTCTATATCTCGGCTCTAGGGGCTCTAGGCCCTCATTTTTTCTCGGCTCTAGCCCCTCATTTTTATCTCGACTCTAGGCCCTCAGGCGTCGATATCTTATCTCGACTCTAGGCCGGCGTCTATATCTCG

From these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Courtesy of Ben Langmead. Used with permission.

Assembly

Overlaps between short reads help to put them together

177 nucleotidesCTAGGCCCTCAATTTTTCTCTAGGCCCTCAATTTTTGGCTCTAGGCCCTCATTTTTTCTCGGCTCTAGCCCCTCATTTTTATCTCGACTCTAGGCCCTCATATCTCGACTCTAGGCCTCTATATCTCGGCTCTAGG GGCGTCTATATCTCGGGCGTCGATATCTGGCGTCTATATCTGGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT35 nucleotides

Courtesy of **Ben Langmead**. Used with permission. The endotermies of the end of

Where is the Poisson?

- •*G - genome length (in bp)*
- •*L - short read average length*
- •*N – number of short read sequenced*
- •*λ – sequencing coverage redundancy = LN/G*
- •*x- number of short reads covering a given site on the genome*

$$
P(x) = \frac{\lambda^x e^{-\lambda}}{x!}
$$

Poisson as a limit of Binomial: For a given site on the genome for each short read Prob(site covered): p=L/G is very small. Number of attempts (short reads): N is very large. Their product (sequencing redundancy): λ = NL/G is O(1).

What fraction of the genome is missing?

-
-
-
-
- -
- -

What fraction of genome is covered?

• Coverage: *λ=NL/G, X – random variable equal to the number of times a given site is covered by short reads. Poisson: P(X=x)= λ xexp(- λ)/x! P(X=0)=exp(- λ), P(X>0)=1- exp(- λ)*

• *Total length covered: G*[1- exp(- λ)]*

Mean proportion .864665 .981684 .997521 .999665 .999955 .999994 of genome covered			

Table 5.1. The mean proportion of the genome covered for different values of λ

G

If DNA was a random chain with p_{A} = p_{C} = p_{G} = p_{T} =1/4 L_{α} [~]16-20 would be enough $2\cdot \mathsf{G}\cdot4^{\mathsf{\textrm{-}low}}$ =2 \cdot 3x10 $^{\textrm{9}}\cdot4^{\mathsf{\textrm{-}16}}$ =1.4 $2\cdot 3$ x $10^9\cdot 4^{\text{-}20}$ =0.0055<<1

G

P(short read can be extended by another short read) = $\frac{L - L_o}{G}$ = p P(short read cannot be extended by any short reads)= $e^{-pN} \approx Ne^{-\lambda}$

number of contigs=
$$
Ne^{-pN} \approx Ne^{-\lambda}
$$

How many contigs?

- A given short read is the right end of a contig if and only if no left ends of other short reads fall within it.
- The left end of another short read has the probability *p=(L-1)/G* to fall within a given read. There are *N-1* other reads. Hence the expected number of left ends inside a given shot read is *p· (N-1)=(N-1) ·(L-1)/G ≈λ*
- If significant overlap required to merge two short reads is *Lov*, modified *λ* is given by (*N-1) ·(L- Lov)/G*
- Probability that no left ends fall inside a short read is *exp(- λ).* Thus the Number of contigs is $N_{contigs}$ =Ne^{- λ}:

	$\begin{array}{ccccccccc} \n0.5 & 0.75 & 1 & 1.5 & 2 & 3 & 4 & 5 & 6 & 7\n\end{array}$					
Mean number 60.7 70.8 73.6 66.9 54.1 29.9 14.7 6.7 3.0 1.3 of contigs						

Table 5.2. The mean number of contigs for different levels of coverage, with $G = 100,000$ and $L = 500$.

Average length of a contig?

- Length of a genome covered: *Gcovered=G· P(X>0)=G · (1- exp(- λ))*
- Number of contigs N_{contigs}=N \cdot e^{-λ}
- Average length of a contig ⁼

$$
=\sum_{i}L_{i}/N_{contigs}=G_{covered}/N_{contigs}=
$$

G · (1- exp(- λ))/ N · e ^λ=L · (1- exp(- λ))/ λ · e - λ

Mean contig 1,600 6,700 33,500 186,000 1,100,000 size			

Table 5.3. The mean contig size for different values of a for the case $L = 500$.