An example of the uniform
distribution

Cycle threshold (Ct) value in
COVID-19 infection



What is the Ct value of a PCR test?
Ct = const — log2(viral DNA concentration)




Why Ct distribution should be uniform?



Why Ct distribution should be uniform?
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Why should we care?

3191 individual positive tests

A from Barak et al. Sci Transl Med. 2021
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High Ct value means
we identified the
infected individual
early, hopefully before
transmission to others

When testing is
mandatory, and people
are tested frequently —
the mean Ct value is
shifted towards high
values



Matlab exercise: Uniform distribution

* Generate a sample of size 100,000 for uniform
random variable X taking values 1,2,3,...10

 Plot the approximation to the
probability mass function based on
this sample

e Calculate mean and variance of this sample

and compare it to infinite sample predictions:
E[X]=(a+b)/2 and V[X]=((a-b+1)?-1)/12




Matlab template: Uniform distribution

b=10; a=1; % b= upper bound; a= lower bound (inclusive)'

Stats=100000; % sample size to generate

rl=rand(Stats,1);

r2=floor(??*rl1)+??;

mean(r2)

var(r2)

std(r2)

[hy,hx]=hist(r2, 1:10); % hist generates histogram in bins

1,2,3...,10

Zq hy - number of counts in each bin; hx - coordinates of
ins

p_f=hy./??; % normalize counts to add up to 1

figure; plot(??,p_f, 'ko-'); ylim([0, max(p_f)+0.01]); % plot

the PMF



Matlab exercise: Uniform distribution

b=10; a=1; % b= upper bound; a= lower bound (inclusive)'
Stats=100000; % sample size to generate
rl=rand(Stats,1);

r2=floor((b-a+1).*rl)+a;

mean(r2)

var(r2)

std(r2)

[hy,hx]=hist(r2, 1:10); % hist generates histogram in bins
1,2,3...,10

% hy - number of counts in each bin; hx - coordinates of
bins

p_f=hy./sum(hy); % normalize counts to add up to 1

figure; plot(hx,p_f, 'ko-'); ylim([0, max(p_f)+0.01]); % plot
the PMF



Bernoulli distribution

The simplest non-uniform distribution
p — probability of success (1)
1-p — probability of failure (0)

B N ik X =1
f(x)_P(X_x)_{l—p if x=20

Jacob Bernoulli
(1654-1705)
Swiss mathematician (Basel)

* Law of large numbers
e Mathematical constant e=2.718...




Bernoulli distribution
l—p 1tx=0

f(x):P(X:x):lP i %= 1

EX)=0xPX=0)+1xPX=1)=01—p)+ 1(p) =p

Var(X) = E(X*) — (EX)* = [0°(1 —p) + 1*(p)] = p* =p — p* = p(1 —p)



Refresher: Binomial Coefficients

n!

. C. = , called n choose k
k k\(n—k)!

=120

10 T 10! 10-9-8-7!
3 3171 3.2.1-7!

Number of ways to choose k objects out of n
without replacement and where the order does not matter.
Called binomial coefficients because of the binomial formula

(p+9)" =(p+@)x(p+q)..x(p+q)= 2cgpan—x






Binomial Distribution

* Binomially-distributed random variable X
equals sum (number of successes) of n

independent Bernoulli trials
* The probability mass function is:
A< 1—p
[ n—x
f(x) =C'p (1 — p) forx=0,1,...n (3-7)

 Based on the binomial expansion:

1= (p1)= 2C

¢ 3=6 Binomial Distributio
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Binomial Mean

X is a binomial random variable
with parameters p and n

Mean:
U= E(X)=np
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Binomial mean, variance and standard deviation

Let X be a binomial random variable with
parameters p and n

- Mean:

H=np

- Variance:

0% = V(X) = np(1-p)

- Standard deviation:

0 =+/np(1-p)
- Standard deviation to mean ratio

(1-p)/p
o/u=/np(1-p)/np= J N




