Foundations of Probability

Random experiments

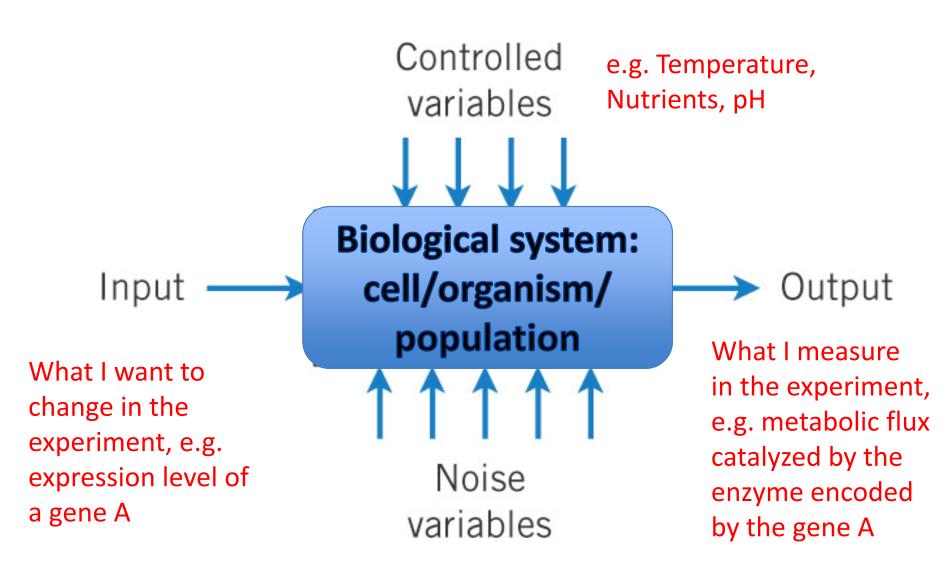
Sample spaces

Venn diagrams of random events

Random Experiments

- An experiment is an operation or procedure, carried out under controlled conditions
 - Example: measure the metabolic flux through a reaction catalyzed by the enzyme A
- An experiment that can result in different outcomes, even if repeated in the same manner every time, is called a random experiment
 - Cell-to-cell variability due to history/genome variants
 - Noise in external parameters such as temperature, nutrients, pH, etc.
- Evolution offers ready-made random experiments
 - Genomes of different species
 - Genomes of different individuals within a species
 - Individual cancer cells

Variability/Noise Produce Output Variation



Internal state of individual cells, Signals from neighbors

Sample Spaces

- Random experiments have unique outcomes.
- The set of all possible outcomes of a random experiment is called the sample space, *S*.
- *S* is discrete if it consists of a finite or countable infinite set of outcomes.
- *S* is continuous if it contains an interval (either a finite or infinite width) of real numbers.

Examples of a Sample Space

- Experiment measuring the abundance of mRNA expressed from a single gene
 S = {x | x > =0}: continuous.
- Bin it into four groups
 S = {below 10, 10-30, 30-100, above 100}: discrete.
- Is gene "on" (mRNA above 30)?
 S = {true, false}: logical/Boolean/discrete.

Event

An event (*E*) is a subset of the sample space of a random experiment, i.e., one or more outcomes of the sample space.

- The union of two events is the event that consists of all outcomes that are contained in either of the two events. We denote the union as $E_1 \cup E_2$
- The intersection of two events is the event that consists of all outcomes that are contained in both of the two events. We denote the intersection as $E_1 \cap E_2$
- The complement of an event in a sample space is the set of outcomes in the sample space that are not in the event. We denote the complement of the event E as E' (sometimes E^c or \bar{E})

Examples

Discrete

- 1. Assume you toss a coin once. The sample space is $S = \{H, T\}$, where H = head and T = tail and the event of a head is $\{H\}$.
- 2. Assume you toss a coin twice. The sample space is $S = \{(H, H), (H, T), (T, H), (T, T)\}$, and the event of obtaining exactly one head is $\{(H, T), (T, H)\}$.

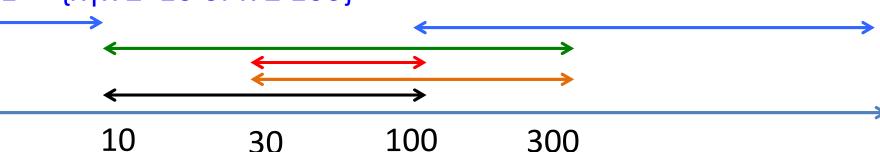
Continuous

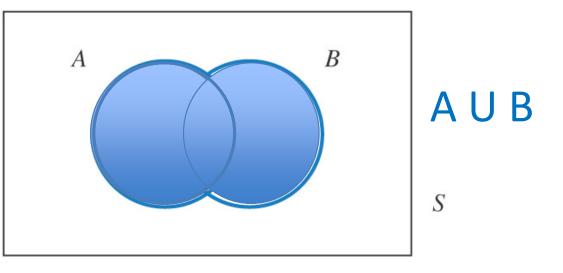
Sample space for the expression level of a gene: $S = \{x | x \ge 0\}$ Two events:

• E1 = {x | 10 < x < 100}

• $E2 = \{x \mid 30 < x < 300\}$

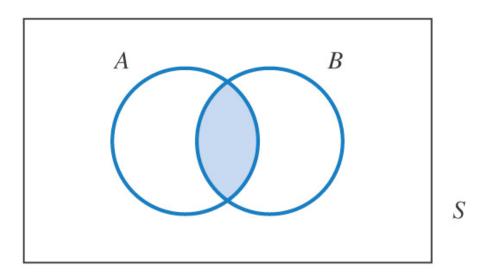
- $E1 \cap E2 = \{x \mid 30 < x < 100\}$
- E1 U E2 = {x | 10 < x < 300}
- $E1' = \{x \mid x \le 10 \text{ or } x \ge 100\}$





Find 5 differences in beard and hairstyle

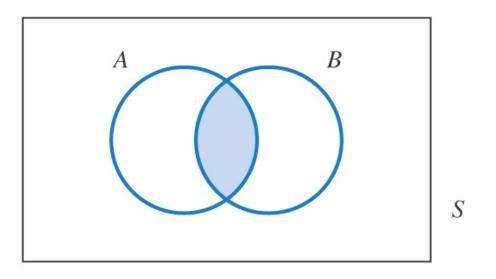
John Venn (1843-1923) Britišh logician John Venn (1990-) Brooklyn hipster



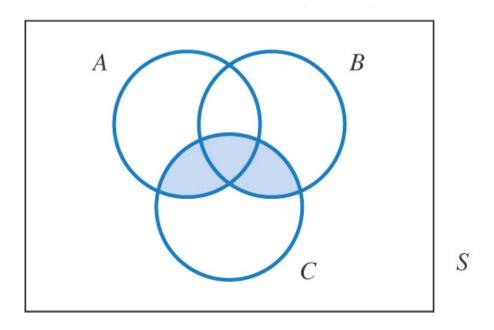
Which formula describes the blue region? A. A U B

- B. $A \cap B$
- C. A'
- D. B'

Get your i-clickers



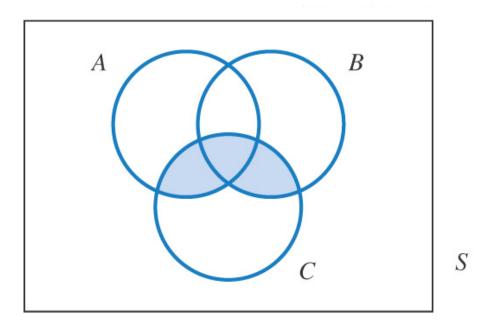
Which formula describes the blue region? A. $A \cup B$ B. $A \cap B$ C. A' D. B'



Which formula describes the blue region?

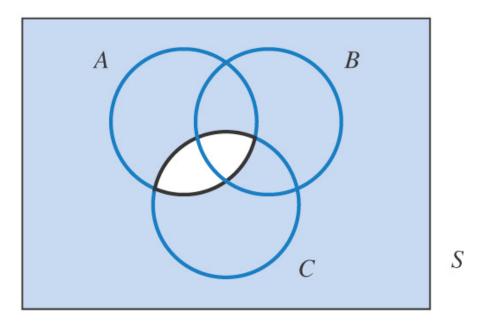
- A. (A U B) ∩ C
- B. $(A \cap B) \cap C$
- C. (A U B) U C
- D. (A ∩ B) U C

Get your i-clickers



Which formula describes the blue region?

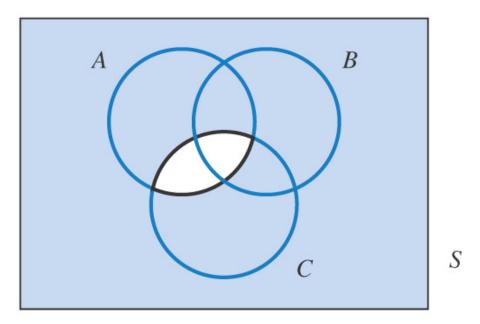
- A. $(A \cup B) \cap C$
- B. $(A \cap B) \cap C$
- C. (A U B) U C
- D. $(A \cap B) \cup C$



Which formula describes the blue region? A. $A \cap C$

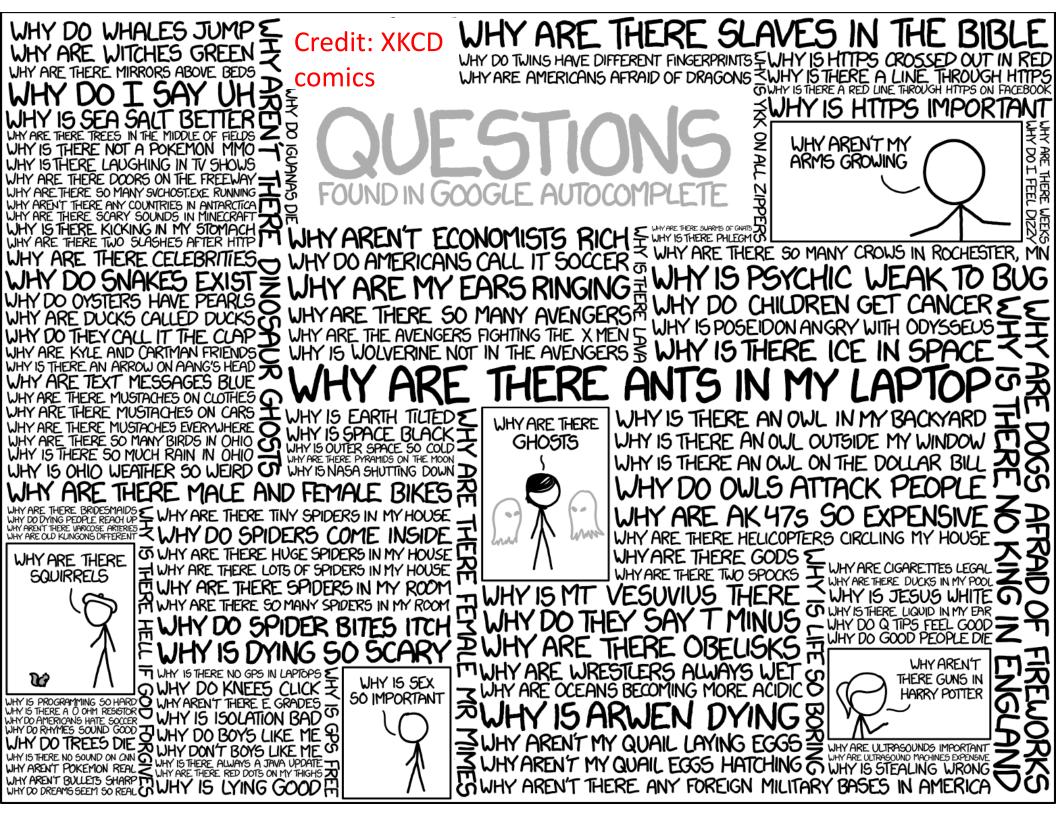
- B. A' U C'
- C. $(A \cap B \cap C)'$
- D. $(A \cap B) \cap C$

Get your i-clickers



Which formula describes the blue region? A. $A \cap C$

- B. A' U C'
- C. $(A \cap B \cap C)'$
- D. $(A \cap B) \cap C$



Definitions of Probability

Two definitions of probability

- (1) **STATISTICAL PROBABILITY**: the relative frequency with which an event occurs in the long run
- (2) INDUCTIVE PROBABILITY: the degree of belief which it is reasonable to place in a proposition on given evidence

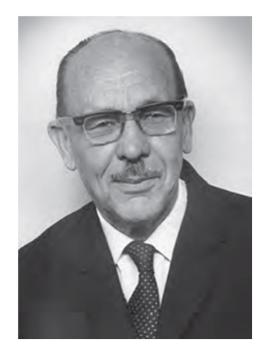
Bulmer, M. G.. Principles of Statistics (Dover Books on Mathematics)

Statistical Probability

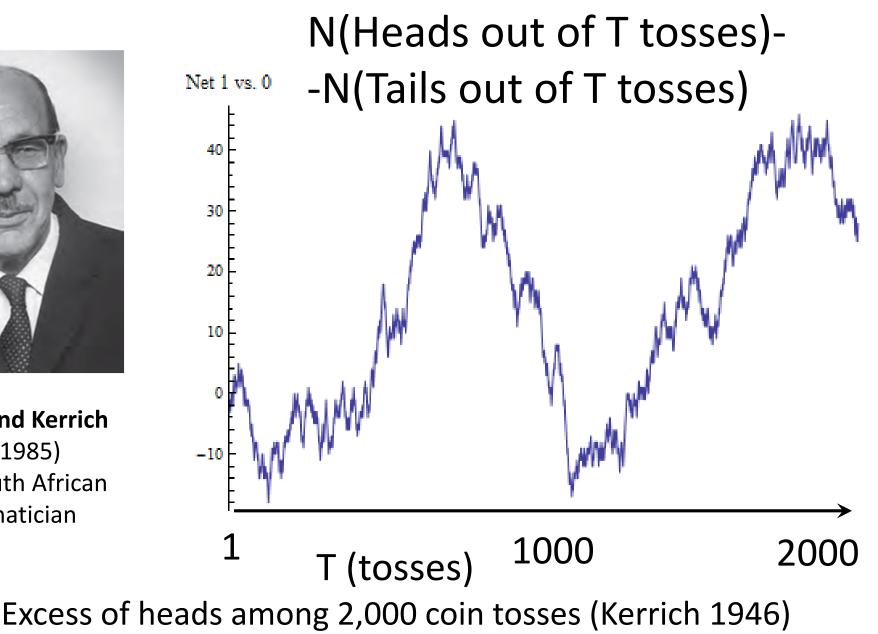
A statistical probability of an event is the limiting value of the relative frequency with it occurs in a very large number of independent trials

Empirical

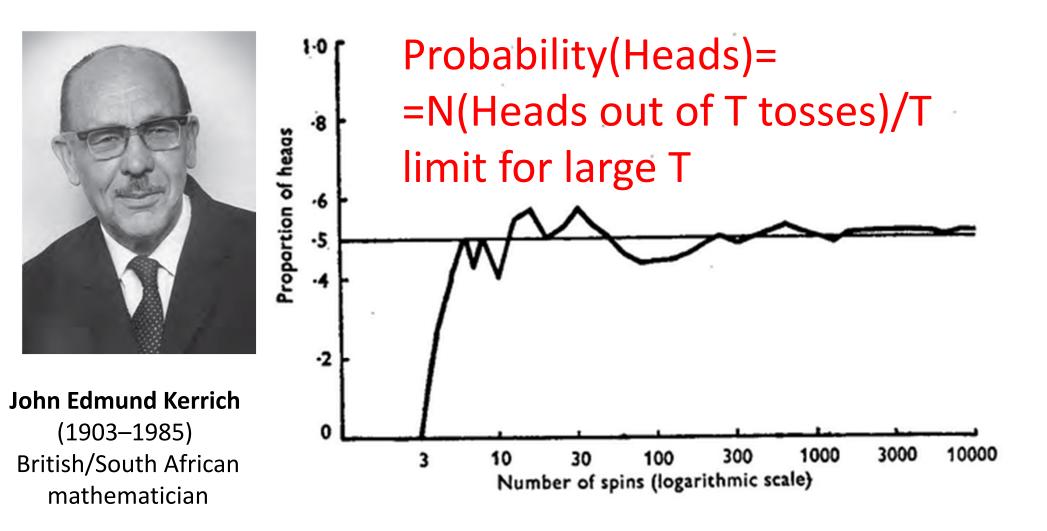
Statistical Probability of a Coin Toss



John Edmund Kerrich (1903 - 1985)British/South African mathematician



Statistical Probability of a Coin Toss



Proportion of heads among 10,000 coin tosses (Kerrich 1946)

Who is ready to use Matlab?

- A. I have Matlab installed on my laptop
- B. I am ready to use Matlab on EWS
- C. I don't have it ready but plan to install it
- D. I am not ready but plan to use EWS
- E. I plan to use other software (Python, R, etc.)

Get your i-clickers

Matlab is easy to learn

- Matlab is the lingua franca of all of engineering
- Use online tutorials e.g.: <u>https://www.youtube.com/watch?v=82TGgQApFIQ</u>
- Matlab is designed to work with Matrices → symbols * and / are understood as matrix multiplication and division
- Use .* and ./ for regular (non-matrix) multiplication
- Add ; in the end of the line to avoid displaying the output on the screen
- Loops: for i=1:100; f(i)=floor(2.*rand); end;
- **Conditional statements**: if rand>0.5; count=count+1; end;
- Plotting: plot(x,y,'ko-'); or semilogx(x,y,'ko-'); or loglog(x,y,'ko-');.
 To keep adding plots onto the same axes use: hold on;
 To create a new axes use figure;
- Generating matrices: rand(100) <u>generates square matrix</u> 100x100.
 <u>Confusing!</u> Use rand(100,1) or zeros(30,20), or randn(1,40) (Gaussian);
- If Matlab complains multiplying matrices check sizes using whos and if needed use transpose operation: x=x';

A Matlab Cheat-sheet (MIT 18.06, Fall 2007)

Basics:

save 'file.ma	save variables to <i>file.mat</i>
load 'file.ma	
diary on	record input/output to file <i>diary</i>
diary off	stop recording
whos	list all variables currenly defined
clear	delete/undefine all variables
help command	quick help on a given command
doc command	extensive help on a given command

Defining/changing variables:

х	=	3		-	define variable x to be 3
х	=	[1	2	3]	set x to the 1×3 row-vector (1,2,3)
					same, but don't echo x to output
х	=	[1	;2;	;3]	set x to the 3×1 column-vector (1,2,3)
Α	=	[1	2	34	;5 6 7 8;9 10 11 12];
set A to the 3×4 matrix with rows 1,2,3,4 etc.					
x(2) = 7 change x from (1,2,3) to (1,7,3)					
$A(2, 1) = 0$ change $A_{2,1}$ from 5 to 0					

Arithmetic and functions of numbers:

3*4, 7+4, 2-6 8/3	multiply, add, subtract, and divide numbers
3^7, 3^(8+2i)	compute 3 to the 7th power, or 3 to the $8+2i$ power
sqrt(-5) compute	e the square root of -5
exp(12) compute	
log(3), log10(100)	compute the natural log (ln) and base-10 log (log ₁₀)
	e the absolute value $ -5 $
sin(5*pi/3) compute	
besselj(2,6) compute	the Bessel function $J(\underline{6})$

Arithmetic and functions of vectors and matrices:

x * 3 multiply every element of x by 3 x + 2 add 2 to every element of x x + y element-wise addition of two vectors x and y A * y product of a matrix A and a vector y A * B product of two matrices A and B x * y not allowed if x and y are two column vectors! x .* y element-wise product of vectors x and y the square matrix A to the 3rd power A^3 not allowed if x is not a square matrix! x^3 every element of x is taken to the 3rd power x.^3 $\cos(x)$ the cosine of every element of x abs(A) the absolute value of every element of A $\begin{array}{l} \exp{(\mathbb{A})} \ e \ \text{to the power of every element of } A \\ \text{sqrt} (\mathbb{A}) & \text{the square root of every element of } A \end{array}$ the matrix exponential e^A expm(A) the matrix whose square is Asqrtm(A)

Constructing a few simple matrices:

6		
rand(12,4)	a 12×4 matrix	with uniform random numbers in [0,1)
randn(12,4)	a 12×4 matrix	with Gaussian random (center 0, variance 1)
zeros(12,4)	a 12×4 matrix	of zeros
ones(12,4)	a 12×4 matrix	
eye(5)	a 5×5 identity	matrix I ("eye") whose first 4 rows are the 4×4 identity
eye(12,4)	a 12×4 matrix	whose first 4 rows are the 4×4 identity
linspace(1.2,		
	row vector of 1	.00 equally-spaced numbers from 1.2 to 4.7
7:15 row vec	tor of 7,8,9,,1	4,15
diag(x)	matrix whose c	liagonal is the entries of x (and other elements $= 0$)

Portions of matrices and vectors:

x(2:12)	the 2nd to the 12th elements of <i>x</i>	
x(2:end)	the 2nd to the last elements of x	
x(1:3:end)	every third element of x, from 1st to the last	
x(:)	all the elements of x	
A(5,:)	the row vector of every element in the 5th row of A	
A(5,1:3)	the row vector of the first 3 elements in the 5th row of A	
A(:,2)	the column vector of every element in the 2nd column of A	
diag(A)	column vector of the diagonal elements of A	

Solving linear equations:

r <i>A</i> a matrix and <i>b</i> a column vector, the solution <i>x</i> to $Ax=b$
e inverse matrix A^{-1}
the LU factorization $PA=LU$
e eigenvalues of A
the columns of V are the eigenvectors of A , and
the diagonals diag (D) are the eigenvalues of A

Plotting:

plot(y)	plot y as the y axis, with $1, 2, 3, \dots$ as the x axis		
plot(x,y)	plot y versus x (must have same length)		
plot(x,A)	plot columns of A versus x (must have same # rows)		
loglog(x,y)	plot y versus x on a log-log scale		
<pre>semilogx(x,y)</pre>	plot y versus x with x on a log scale		
<pre>semilogy(x,y)</pre>	plot y versus x with y on a log scale		
<pre>fplot(@(x)expression,[a,b])</pre>			
	plot some expression in x from $x=a$ to $x=b$		
axis equal	force the x and y axes of the current plot to be scaled equally		
title('A Titl			
) label the x axis as $blah$		
ylabel('blah') label the y axis as <i>blah</i>		
<pre>legend('foo',</pre>	'bar') label 2 curves in the plot foo and bar		
grid include a	a grid in the plot		
figure	open up a new figure window		

Transposes and dot products:

x.', A.'	the transposes of x and A		
x', A'	the complex-conjugate of the transposes of x and A	dot(x,y),	sum(x.*y) two other ways to write the dot product
х' * у	the dot (inner) product of two <i>column</i> vectors x and y	х * у'	the <i>outer</i> product of two <i>column</i> vectors <i>x</i> and <i>y</i>

http://web.mit.edu/18.06/www/Spring09/matlab-cheatsheet.pdf

VIA app by Kramer needs to be updated

- Get the latest version app from <u>https://k.kramerav.com/support/download.as</u> <u>p?f=61213</u>
- On 8/24/2023 the version that worked was 4.0.3.1344

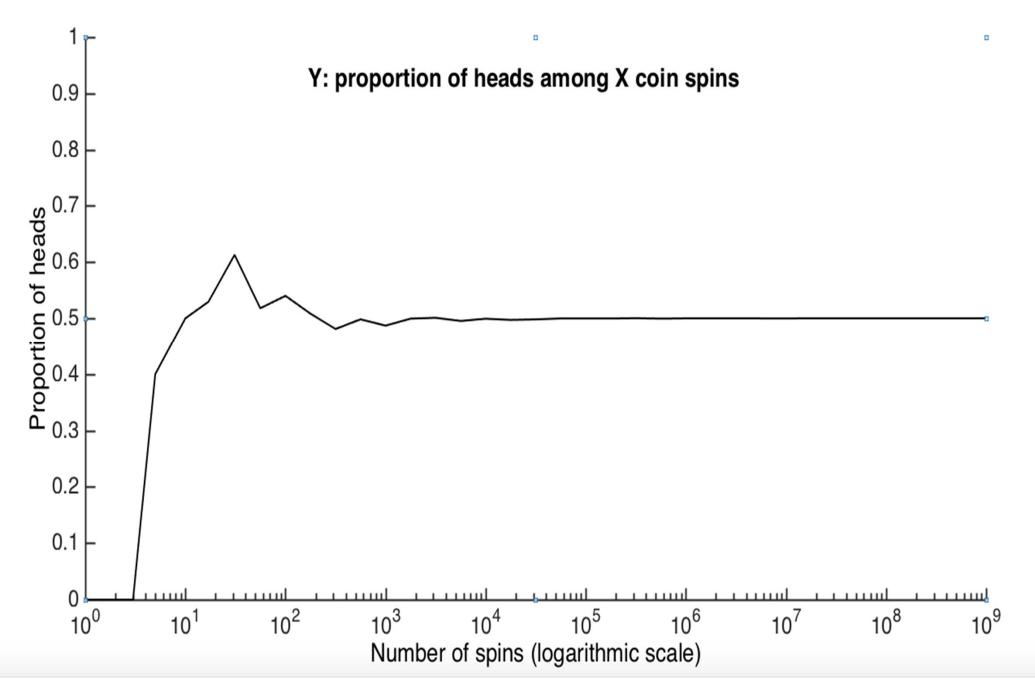
Matlab group exercise

Each table to edit the file coin_toss_template.m (replace all ?? with commands/variables/operations) or writes a new Matlab (Python, R, or anything else) script to:

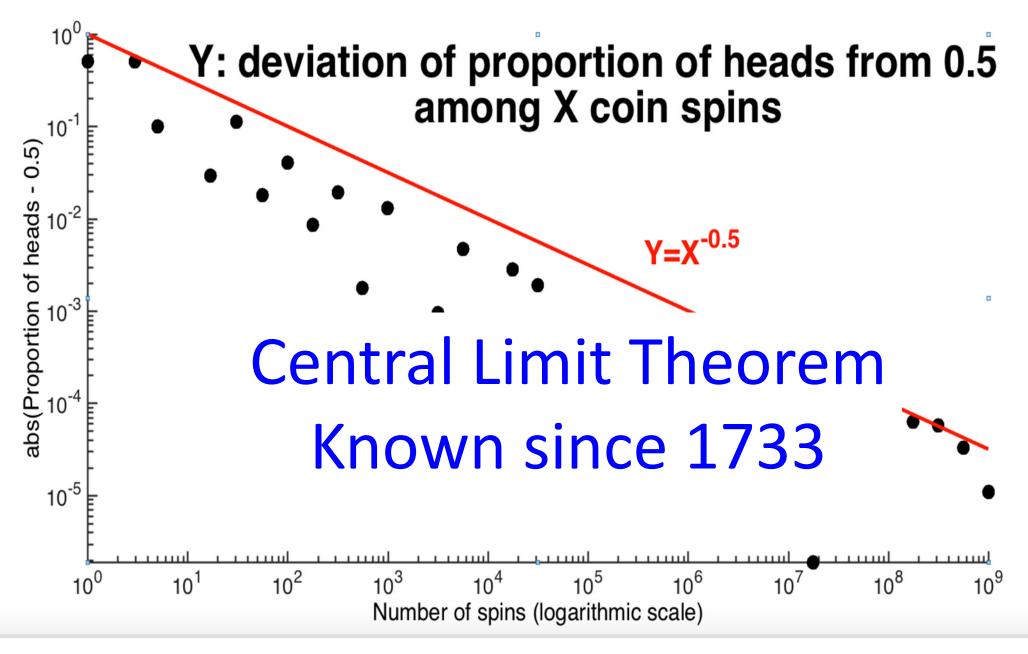
- Simulate a fair coin toss experiment
- Generate multiple tosses of a fair coin: 1 – heads, 0 - tails
- Calculate the fraction of heads (f_heads(t)) at timepoints: t=10; 100; 1000; 10,000; 100,000; 1,000,000;10,000,000 coin tosses
- Plot fraction of heads f_heads(t) vs t with a logarithmic t-axis
- Plot abs(f_heads(t)-0.5) vs t on a log-log plot (both axes are logarithmic)

How I did it

- Stats=1e7;
- r0=rand(Stats,1); r1=floor(2.*r0);
- n_heads(1)=r1(1);
- for t=2:Stats; n_heads(t)=n_heads(t-1)+r1(t); end;
- tp=[1, 10,100,1000, 10000, 100000, 1000000, 1000000]
- np=n_heads(tp); fp=np./tp
- figure; semilogx(tp,fp,'ko-');
- hold on; semilogx([1,10000000],[0.5,0.5],'r--');
- figure; loglog(tp,abs(fp-0.5),'ko-');
- hold on; loglog(tp,0.5./sqrt(tp),'r--');



Proportion of heads among 1,000,000,000 coin tosses (10⁵ more than Kerrich) took me 33 seconds on my Surface Book



ABS(Proportion of heads-0.5) among 100,000,000 coin tosses