
Reminder



Multiple Linear Regression
(Chapters 12-13 in 

Montgomery, Runger)



12-1: Multiple Linear Regression Model

• Many applications of regression analysis 
involve situations in which there are more than 
one regressor variable Xk used to predict Y.

• A regression model then is called a multiple 
regression model. 

12-1.1 Introduction
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Multiple Linear Regression Model

Y = 0  + 1x1 + 2 x 2 + 3x3 +… k x k + 
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One can also use powers and products of other variables
or even non-linear functions like exp(xi) or log(xi)
instead of x3 ,… x k . 

Example: the general two-variable quadratic 
regression has 6 constants:
Y = 0 + 1x1 + 2 x 2 + 3(x1)2 +4(x2)2 + 5 (x1x2) + 



12-1: Multiple Linear Regression Model

12-1.3 Matrix Approach to Multiple Linear Regression

Suppose the model relating the regressors 
to the response is

In matrix notation this model can be written as

y = X + 
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12-1: Multiple Linear Regression Model

12-1.3 Matrix Approach to Multiple Linear Regression

where
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12-1.3 Matrix Approach to Multiple Linear Regression
We wish to find the vector that minimizes the sum of 
squares of error terms:

The resulting least squares estimate is
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Multiple Linear Regression Model

ˆ  1(X X) X y 

̂



12-1: Multiple Linear Regression Models

12-1.4 Properties of the Least Squares Estimators

Unbiased estimators:

Covariance Matrix of Estimators:

11



12-1: Multiple Linear Regression Models

12-1.4 Properties of the Least Squares Estimators

Individual variances and covariances:

In general,
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12-1: Multiple Linear Regression Models

Estimating error variance ε2

An unbiased estimator of error variance ε2 is
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Here p=k+1 for k-variable multiple linear regression



The adjusted R2 is

• The adjusted R2 statistic penalizes adding terms to the 
MLR model.
• It can help guard against overfitting (including 
regressors that are not really useful)
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R2 and Adjusted R2

The coefficient of multiple determination R2



How to know where to stop
adding variables?

• Adding new variables xi to MLR 
watch the adjusted R2

• Once the adjusted R2 
no longer increases = stop. 
Now you did the best you can.



Credit: XKCD 
comics 



Principal Component Analysis





Multivariable statistics and 
Principal Component Analysis (PCA)

• A table of n observations in which p variables 
were measured 



Suppose we have a population measured on p random variables 
X1,…,Xp. Note that these random variables represent the p-axes of the 
Cartesian coordinate system in which the population resides. Our goal 
is to develop a new set of p axes (linear combinations of the original p 
axes) in the directions of greatest variability:

This is accomplished by rotating the axes.

X1

X2

Trick: Rotate Coordinate Axes

Adapted from slides by Prof. S. Narasimhan, “Computer Vision” course at CMU



Applications of PCA

• Uses:
– Data Visualization
– Dimensional Reduction
– Data Classification

• Examples:
– How many unique “sub-sets” are in the 

sample?
– How are they similar / different?
– What are the underlying factors that 

most influence the samples?
– Which measurements are best to 

differentiate between samples?
– How to best present what is 

“interesting”?
– Which “sub-set” does this new sample 

rightfully belong?

Adapted from slides by Prof. S. Narasimhan, “Computer Vision” course at CMU



such that:

x'i's are uncorrelated (orthogonal)
x'1 explains as much as possible of original variance in data set
x'2 explains as much as possible of remaining variance
etc.

PCA: General

Adapted from slides by Prof. S. Narasimhan, “Computer Vision” course at CMU

From p original variables: x1,x2,...,xp:
Produce k new variables: x’1,x’2,...,x’p:
x’1 = v11x1 + v12x2 + ... + v1pxp

x’2 = v21x1 + v22x2 + ... + v2pxp

...
x’p = vp1x1 + vp2x2 + ... + vppxp
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1st Principal 
Component, y1

2nd Principal 
Component, y2

Adapted from slides by Prof. S. Narasimhan, “Computer Vision” course at CMU



PCA Scores
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Adapted from slides by Prof. S. Narasimhan, “Computer Vision” course at CMU



PCA Eigenvalues
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Adapted from slides by Prof. S. Narasimhan, “Computer Vision” course at CMU



Multivariable statistics and 
Principal Component Analysis (PCA)

• A table of n observations in which p variables 
were measured 

p x p symmetric 
matrix R of 
corr. coefficients




 
PCA: Diagonalize 
matrix R



Principle Component Analysis (PCA)
• p x p symmetric matrix R of corr. coefficients 
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• R=n-1Z’*Z is a “square” of the matrix Z of standardized r.v.: 
ఈ

௫ഀିఓ
ఙ
 all eigenvalues of R are non-negative

• Diagonal elements=1  tr(R)=p
• Can be diagonalized: 

R=V*D*V’ where D is the diagonal matrix
• d(1,1) –largest eig. value, d(p,p) – the smallest one
• The meaning of V(i,k) – contribution of the data type i 

to the k-th eigenvector 
• tr(D)=p, the largest eigenvalue d(1,1) absorbs a 

fraction =d(1,1)/p of all correlations can be ~100%
• Scores: X’=Z*V: n x p matrix. Meaning of X’(,k) –

participation  of the sample #  in the k-th eigenvector



Credit: XKCD 
comics 



Human T cell expression data
• The matrix contains 47 expression samples from Lukk et al, 

Nature Biotechnology 2010
• All samples are from T cells in different individuals
•  Only the top 3000 genes with the largest variability were used
• The value is log2 of gene’s expression level in a given sample as 

measured by the microarray technology

• T cells
a T cell 



Matlab exercise on MLR
• Every group works with 

g0=2907;  g1=1527;  g2=2629; g3=2881;      
g4=1144; g5=1066;

• Compute Multiple Linear Regression (MLR): 
where 
y=exp_t (g0); x1= exp_t (g1); x2= exp_t (g2);

• How much better the MLR did compared to the 
Single Linear Regression (SLR)? 

• Continue increasing the number of genes in x 
until R_adj starts to decrease



How I did it
• g0=2907; g1=1527; g2=2629; g3=2881;g4=1144; g5=1066;
• y=exp_t(g0,:)’;
• %% first use one x to predict y
• x=exp_t(g1,:)';
• figure; plot(x,y,'ko')
• lm=fitlm(x,y)
• y_fit=lm.Fitted;
• hold on;
• plot(x,lm.Fitted,'r-');
• %% now use 2 x's to predict y
• x=[exp_t(g1,:)', exp_t(g2,:)'];
• lm2=fitlm(x,y)
• y_fit=lm2.Fitted;
• hold on; plot(x(:,1),y_fit,'gd’);
• %% now use m x's to predict y
• corr_matrix=corr(exp_t');
• g0=2907;
• [u v]=sort(corr_matrix(g0,:),'descend');
• x=[exp_t(v(2:m+1),:)'];
• lm3=fitlm(x,y)
• y_fit=lm3.Fitted;
• plot(x(:,1),y_fit,'s');



Credit: XKCD 
comics 


