
Regression analysis
Two variables 

(Montgomery and Runger: ch 11
Brani Vidakovic: ch 14) 



Reminder



Covariance Defined
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Correlation is “normalized covariance”

• Also called: 
Pearson correlation 
coefficient 

ρXY=σXY /σXσY
is the covariance 
normalized to 
be -1 ≤ ρXY ≤ 1

Karl Pearson (1852– 1936) 
English mathematician and biostatistician



Covariance and Scatter Patterns
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Figure 5-13  Joint probability distributions and the sign of cov(X, Y).  
Note that covariance is a measure of linear relationship.  Variables 
with non-zero covariance are correlated.



Regression analysis
• Many problems in engineering and science involve 
sample in which two or more variables were measured. 
They may not be independent from each other and one (or 
several) of them can be used to predict another

• Everyday example: in most samples height and weight 
of  people are related to each other

• Biological example: in a cell sorting experiment the 
copy number of a protein may be measured alongside its 
volume

• Regression analysis uses a sample to build a model to 
predict protein copy number given a cell volume 6



Sir Francis Galton,
(1822 -1911) was an English 
statistician, anthropologist, 
proto-geneticist, psychometrician, 
eugenicist, (“Nature vs Nurture”, 
inheritance of intelligence), 
tropical explorer, geographer, 
inventor (Galton Whistle 
to test hearing), meteorologist 
(weather map, anticyclone).

Invented both correlation and 
regression analysis when studied 
heights of fathers and sons

Found that fathers with 
height above average tend to have
sons with height also above average
but closer to the average. 
Hence “regression” to the mean



Two variable samples

8

• Oxygen can be distilled from the air

• Hydrocarbons need to be filtered out 
or the whole thing would go kaboom!!!

• When more hydrocarbons were removed, 
the remaining oxygen stays cleaner

• Except we don’t know how dirty was the air 
to begin with
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Linear regression
The simple linear regression model is given by

଴ ଵ

is the random error

slope ଵ and intercept ଴ of the line are called 
regression coefficients

Note: Y , X and are random variables

Let’s assume that E( )=0  
E( ) = ଴ ଵ + E( ) = ଴ ଵ 10







Method of least squares

• The method of least squares is used to estimate the 
parameters, 0 and 1 by minimizing the sum of the 
squares of the vertical deviations in Figure 11-3.

Figure 11-3 Deviations of the 
data from the estimated 
regression model.
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Traditional notation

Definition
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11-2:  Simple Linear Regression 

Definition
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11-4:  Hypothesis Tests in Simple Linear Regression 

11-4.2 Analysis of Variance Approach to Test 
Significance of Regression

The analysis of variance identity is

Symbolically,
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11-7:  Adequacy of the Regression Model 

11-7.2 Coefficient of Determination (R2)  
VERY COMMONLY USED

• The quantity

is called the coefficient of determination and is   often 
used to judge the adequacy of a regression model.
• 0  R2  1;
• We often refer (loosely) to R2 as the amount of 
variability in the data explained or accounted for by the 
regression model.
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11-7:  Adequacy of the Regression Model 

11-7.2 Coefficient of Determination (R2)

• For the oxygen purity regression model, 
  R2 = SSR/SST 

     = 152.13/173.38 
     = 0.877

•  Thus, the model accounts for 87.7% of the 
variability in the data.
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11-2:  Simple Linear Regression 

Estimating ε2

An unbiased estimator of ε2 is

where SSE can be easily computed using
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11-3:  Properties of the Least Squares Estimators 

• Slope Properties

• Intercept Properties
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11-4:  Hypothesis Tests in Simple Linear Regression 

Figure 11-5 The null hypothesis H0: 1 = 0 is accepted.
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11-4:  Hypothesis Tests in Simple Linear Regression 

Figure 11-6 The null hypothesis H0: 1 = 0 is rejected.
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11-4:  Hypothesis Tests in Simple Linear Regression 

11-4.1 Use of Z-tests for large n 
An important special case of the hypotheses of 
Equation 11-18 is

These hypotheses relate to the significance of regression.
Failure to reject H0 is equivalent to concluding that there 
is no linear relationship between X and Y.
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11-4:  Hypothesis Tests in Simple Linear Regression 
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11-4:  Hypothesis Tests in Simple Linear Regression 

11-4.1 Use of t-tests for smaller n.

The number of degrees of freedom in n-2

One can always fit a straight line through two 
points so one needs n>=3



11-4:  Hypothesis Tests in Simple Linear Regression 
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Credit: XKCD 
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Multiple Linear Regression
(Chapters 12-13 in 

Montgomery, Runger)



12-1: Multiple Linear Regression Model

• Many applications of regression analysis 
involve situations in which there are more than 
one regressor variable Xk used to predict Y.

• A regression model then is called a multiple 
regression model. 

12-1.1 Introduction

30
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Multiple Linear Regression Model

Y = 0 + 1x1 + 2 x 2 + 3x3 +… k x k + 
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One can also use powers and products of other variables
or even non-linear functions like exp(xi) or log(xi)
 instead of x3 ,… x k . 

Example: the general two-variable quadratic 
regression has 6 constants:
Y = 0  + 1x1 + 2 x 2 + 3(x1)2

 +4(x2)2
  + 5 (x1x2) + 



Nonlinear Regression Example:
Logistic Regression

x1

x2

t

b
w1

w2

P(Y=1) = 𝝈(x1*w1 + x2*w2 + b)

Linear regression analog

Y= X1*b1 + X2*b2 + b0

𝝈 P(y=
1) 



How to know where to stop
adding new variables or 
powers of old variables?



A Regression Problem

x

y

y = f(x) + noise
Can we learn f from this data?

Let’s consider three methods…

Copyright © Andrew W. Moore 



Linear Regression

x

y

Copyright © Andrew W. Moore 



Quadratic Regression

x

y

Copyright © Andrew W. Moore 



Join-the-dots

x

y

Also known as piecewise 
linear nonparametric 
regression if that makes 
you feel better

Copyright © Andrew W. Moore 



Which is best?

x

y

x

y

Why not choose the method with the best fit to the 
data?

Copyright © Andrew W. Moore 



What do we really want?

x

y

x

y

Why not choose the method with the best fit to the 
data?

“How well are you going to predict future data drawn from 
the same distribution?”

Copyright © Andrew W. Moore 



The test set method

x

y

1. Randomly choose 
30% of the data to 
be in a test set
2. The remainder is a 
training set

Copyright © Andrew W. Moore 



The test set method

x

y

(Linear regression example)

1. Randomly choose 
30% of the data to 
be in a test set
2. The remainder is a 
training set
3. Perform your 
regression on the 
training set

Copyright © Andrew W. Moore 



The test set method

x

y

(Linear regression example)
Mean Squared Error = 2.4

1. Randomly choose 
30% of the data to 
be in a test set
2. The remainder is a 
training set
3. Perform your 
regression on the 
training set
4. Estimate your 
future performance 
with the test set

Copyright © Andrew W. Moore 



The test set method

x

y

(Quadratic regression example)
Mean Squared Error = 0.9

1. Randomly choose 
30% of the data to 
be in a test set
2. The remainder is a 
training set
3. Perform your 
regression on the 
training set
4. Estimate your 
future performance 
with the test set
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The test set method

x

y

1. Randomly choose 
30% of the data to 
be in a test set
2. The remainder is a 
training set
3. Perform your 
regression on the 
training set
4. Estimate your 
future performance 
with the test set

(Join the dots example)
Mean Squared Error = 2.2

Copyright © Andrew W. Moore 



Double descend- the main reason modern 
Machine Learning works so well 



Credit: XKCD 
comics 



Human T cell expression data
• The matrix contains 47 expression samples from Lukk et al, 

Nature Biotechnology 2010
• All samples are from T cells in different individuals
•  Only the top 3000 genes with the largest variability were used
• The value is log2 of gene’s expression level in a given sample as 

measured by the microarray technology

• T cells
a T cell 



“Let’s Make a Deal” show with Monty Hall aired 
on NBC/ABC 1963-1986





Matlab exercise #1: “Wheel of Fortune” 
• Each group gets a pair of genes that are known to be 

correlated. 
• Each group also gets a random pair of genes selected by 

the “Wheel of Fortune”. They may or may not be 
correlated

• Download (log-transformed) expression_table.mat
• Run command fitlm(x,y) on assigned and random pairs 
• Record β0, β1, R2, P-value of the slope β1 and write them 

on the blackboard
• Validate Matlab result for R2 using your own calculations
• Look up gene names (see gene_description in 

your workspace) and write down a brief description of 
biological functions of genes. Does their correlation 
make biological sense?



Correlated pairs
plausible biological connection based 
on short description

1, 6    g1=1994;   g2=188;
2, g1=2872;   g2=1269; 
3, g1=1321;   g2=10;
4, g1= 886;    g2=819;
5, g1=2138;   g2=1364;

no obvious biological common function
g1=1+floor(rand.*3000); g2=1+floor(rand.*3000); 
disp([g1, g2])



Random pairs
>> g1=floor(3000.*rand)+1; g2=floor(3000.*rand)+1; 
disp([g1,g2]);
        

>> g1=floor(3000.*rand)+1; g2=floor(3000.*rand)+1; 
disp([g1,g2]);
         

>> g1=floor(3000.*rand)+1; g2=floor(3000.*rand)+1; 
disp([g1,g2]);
        
>> g1=floor(3000.*rand)+1; g2=floor(3000.*rand)+1; 
disp([g1,g2]);
         



Matlab code
• load expression_table.mat
• g1=2907; g2=288;
• x=exp_t(g1,:)'; y=exp_t(g2,:)';
• figure; plot(x,y,'ko');
• lm=fitlm(x,y)
• y_fit=lm.Fitted;
• hold on; plot(x,lm.Fitted,'r-');
• SST=sum((y-mean(y)).^2);
• SSR=sum((y_fit-mean(y)).^2);
• SSE=sum((y-y_fit).^2);
• R2=SSR./SST
• disp([gene_names(g1), gene_names(g2)]);
• disp(gene_description(g1)); disp(gene_description (g2));



Credit: XKCD 
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