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Example 7-1: Resistors
An electronics company manufactures resistors having a mean 

resistance of 100 ohms and a standard deviation of 10 ohms. What 
is the approximate probability that a random sample of n = 25 
resistors will have an average resistance of less than 95 ohms?
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Example 7-1: Resistors
An electronics company 

manufactures resistors having a 
mean resistance of 100 ohms 
and a standard deviation of 10 
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probability that a random 
sample of n = 25 resistors will 
have an average resistance of 
less than 95 ohms?
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Figure 7-2  Desired probability is 
shaded

Answer:



Two Populations
We have two independent populations.  What is the 

distribution of the difference of their sample means?
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Sampling Distribution of a Difference in Sample Means

• If we have two independent populations with means μ1 and 
μ2, and variances σ1

2 and σ2
2, 

• And if X-bar1 and X-bar2 are the sample means of two 
independent random samples of sizes n1 and n2 from these 
populations:

• Then the sampling distribution of:

is approximately standard normal, if the conditions of the 
central limit theorem apply.  

• If the two populations are normal, then the sampling 
distribution is exactly standard normal.
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Example 7-3: Aircraft Engine Life
The effective life of a component 

used in jet-turbine aircraft 
engines is a random variable 
with μold=5000 hours 
and σold=40 hours (old).  The 
engine manufacturer 
introduces an improvement 
into the manufacturing process 
for this component that 
changes the parameters to 
μnew=5050 hours 
and σnew=30 hours (new).

Random samples  of 16 
components manufactured 
using “old” process and  25  
components using “new” 
process are chosen.

What is the probability new 
sample mean is at least 25 
hours longer than old?
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Example 7-3: Aircraft Engine Life
The effective life of a component 

used in jet-turbine aircraft 
engines is a normal-distributed 
random variable with 
parameters shown (old).  The 
engine manufacturer 
introduces an improvement 
into the manufacturing 
process for this component 
that changes the parameters 
mu and sigma as shown (new).

Random samples are selected 
from the “old” process and 
“new” process as shown.

What is the probability new 
sample mean is at least 25 
hours longer than old?
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Old (1) New (2) Diff (2-1)
mu = 5,000 5,050 50

sigma = 40 30 50
n  = 16 25

s  / √n  = 10 6 11.7
z = -2.14

P(xbar2-xbar1 > 25) = P(Z>z ) = 0.9840

Process

Calculations

Figure 7-4  Sampling distribution of 
the sample mean difference. 
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Descriptive statistics:
Point estimation:



Point Estimation
• A sample was collected: X1, X2,…, Xn

• We suspect that sample was drawn from a 
random variable distribution f(x)

• f(x) has k parameters that we do not know
• Point estimates are estimates of the parameters of the 

f(x) describing the population based on the  sample
– For exponential  PDF: f(x)=λexp(-λx) one wants to estimate λ
– For Bernoulli PDF: px(1-p)1-x one wants to estimate p
– For normal PDF one wants to estimates both μ and σ

• Point estimates are uncertain: therefore, we can talk of 
averages and standard deviations of point estimators
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Point Estimator
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• There could be multiple choices for the point estimator of a parameter.
• To estimate the mean of a population, we could choose the:

– Sample mean
– Sample median
– Peak of the histogram
– ½ of (largest + smallest) observations of the sample.

• We need to develop criteria to compare estimates using statistical 
properties.



Unbiased Estimators Defined
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Bias vs Noise



Mean Squared Error

Sec 7-3.4 Mean Squared Error of an 
Estimator 16
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Statistic #1: Sample Mean
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Sample variance S2 –
is an estimator of 

the population variance σ2



Sample Variance
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Why divide by n-1 instead of n?

• The sample mean is on average closer to points 
ଵ ଶ, ௡ than the true mean 

௜
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• Consider a sample of size n=1. 
Then = ଵ while µ≠ ଵ . Dividing by n gives s2 =0, 
while dividing by n-1 leaves s2 undefined (0/0)

• For n=2, is exactly halfway between ଵ and ଶ
making its sum of squares smaller than that of 

• Dividing by n-1 on average corrects for a smaller 
sum of squares: S2 is an unbiased estimator of ଶ







Example 7-4: Sample Variance S2 is Unbiased
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Methods of Point Estimation

• We will cover two popular methodologies to 
create point estimates of a population 
parameter.
– Method of moments
– Method of maximum likelihood

• Each approach can be used to create estimators 
with varying degrees of biasedness and relative 
MSE efficiencies.
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Method of moments for 
point estimation



What are moments?
• The p-th population moment of a random variable is the 

expected value of Xp

– First moment: ାஶ
ஶ

– Second moment:  ଶ ଶ ଶାஶ
ஶ

– p-th moment: ௣ାஶ
ஶ

– The population moment relates to the entire population 

• A sample moment is calculated like its population 
moments but for a finite sample
– Sample first moment = sample mean = ଵ

௡ ௜
௡
௜ୀଵ

– Sample p-th moment  ଵ
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Moment Estimators
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Exponential Distribution: Moment Estimator-1st moment 

• Suppose that x1, x2, …, xn is a random sample 
from an exponential distribution f(x)=λexp(-λx) 
with parameter λ.

• There is only one parameter to estimate, so 
equating population and sample first moments, 
we have one equation: E(X) = .

• E(X) = 1/λ thus 
λ = 1/ is the 1st moment estimator.
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Matlab exercise
• Generate 100,000 exponentially distributed 

random numbers with λ=3: f(x)=λexp(-λx) 
– Use random('Exponential’…) but read the manual to 

know how to introduce parameters.
• Get a moment estimate of lambda based on 

the 1st moment 
• Get a moment estimate of lambda based on 

the 2nd moment 
– Second moment of the exponential distribution is E(X2) = 

E(X)2+Var(X)= 1/λ2 + 1/λ2 = 2/λ2

• Get a moment estimate of lambda based on 
the 20th moment 
– Generally, p-th moment of the exponential distribution is 

E(XP) = p!/λP



How I solved it

• Stats=100000; 
• Y=random('Exponential', 1/3, Stats, 1);
%parametrization in MATLAB is 1/lambda
• 1/mean(Y) %matching the first moment
% ans = 3.0086
• sqrt(2/mean(Y.^2)) %matching the second 

moment
% ans = 3.0081
• (factorial(20)/mean(Y.^20))^(1./20) %matching 

the 20th moment
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Method of Maximum Likelihood 
for point estimation





Maximum Likelihood Estimators
• Suppose that X is a random variable with probability 

distribution f(x, θ), where θ is a single unknown 
parameter.  Let x1, x2, …, xn be the observed values in a 
random sample of size n.  Then the likelihood function of 
the sample is the probability to get it in a random 
variable with PDF f(x, θ):

L(θ) = f(x1, θ) · f(x2, θ) ·…· f(xn , θ) (7-9)

• Note that the likelihood function is now a function of 
only the unknown parameter θ.  The maximum likelihood 
estimator (MLE) of θ is the value of θ that maximizes the 
likelihood function L(θ).

• Usually, it is easier to work with logarithms: l(θ) = ln L(θ) 
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Example 7-11: Exponential MLE

Let X be a exponential random variable with parameter λ.  The 
likelihood function of a random sample of size n is:
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Example 7-9: Bernoulli MLE
Let X be a Bernoulli random variable.  The probability mass 

function is f(x;p) = px(1-p)1-x, x = 0, 1 where P is the parameter 
to be estimated.  The likelihood function of a random sample 
of size n is:
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Example 7-10: Normal MLE for μ
Let X be a normal random variable with unknown mean μ and 

variance σ2.  The likelihood function of a random sample of 
size n is:
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Example 7-11: Normal MLE for σ2

Let X be a normal random variable with the estimate of mean μ
determined by MLE (see the previous slide) and an unknown 
variance σ2.  The likelihood function of a random sample of size n is:
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