
Marginal Probability Distributions (discrete)
For a discrete joint PDF, there are marginal distributions 

for each random variable, formed by summing the 
joint PMF over the other variable.
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1 2 3 f Y (y ) =
1 0.01 0.02 0.25 0.28
2 0.02 0.03 0.20 0.25
3 0.02 0.10 0.05 0.17
4 0.15 0.10 0.05 0.30

f X (x ) = 0.20 0.25 0.55 1.00

x =  number of bars of 
signal strength

y =  number of 
times city name 

is stated

Figure 5-6  From the prior example, 
the joint PMF is shown in green 
while the two marginal PMFs are 
shown in purple.

Called marginal 
because they are 
written in the margins



Conditional Probability Distributions

From Example 5-1
P(Y=1|X=3) = 0.25/0.55 = 0.455
P(Y=2|X=3) = 0.20/0.55 = 0.364
P(Y=3|X=3) = 0.05/0.55 = 0.091
P(Y=4|X=3) = 0.05/0.55 = 0.091

Sum = 1.00

Sec 5-1.3 Conditional Probability 
Distributions 2

Recall that 𝑃 𝐵|𝐴 ൌ
𝑃 𝐴 ∩ 𝐵
𝑃 𝐴

1 2 3 f Y (y ) =
1 0.01 0.02 0.25 0.28
2 0.02 0.03 0.20 0.25
3 0.02 0.10 0.05 0.17
4 0.15 0.10 0.05 0.30

f X (x ) = 0.20 0.25 0.55 1.00

x =  number of bars of 
signal strength

y =  number of 
times city name 

is stated

Note that there are 12 probabilities conditional on X, and 12 
more probabilities conditional upon Y.

P(Y=y|X=x)=P(X=x,Y=y)/P(X=x)=
=f(x,y)/fX(x)
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X and Y are Bernoulli variables

What is the marginal PY(Y=0)?
A. 1/6
B. 2/6
C. 3/6
D. 4/6
E. I don’t know

Get your i-clickers

Y=1Y=0
1/62/6X=0
1/62/6X=1
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X and Y are Bernoulli variables

What is the conditional P(X=0|Y=1)?
A. 2/6
B. 1/2
C. 1/6
D. 4/6
E. I don’t know

Get your i-clickers

Y=1Y=0
1/62/6X=0
1/62/6X=1



Reminder



Statistically independent events
Always true: P(A∩B)=P(A|B)·P(B)=P(B|A)·P(A)



Independence of Random Variables X and Y
• Random variable independence

means that knowledge of any of the 
values of X does not change
probabilities of any of the values of Y

• Opposite: Dependence implies that 
some values of X influence the 
probability of some values of Y

Sec 5-1.4 Independence 7



Independence for Discrete Random Variables

• Remember independence of events 
(slide 13 lecture 4) :  Events are independent if 
any one of the three conditions are met:
1) P(A|B)=P(A ∩ B)/P(B)=P(A) or 
2) P(B|A)= P(A ∩ B)/P(A)=P(B) or 
3) P(A ∩ B)=P(A) · P(B)

• Random variables independent if all events
A that Y=y and B that X=x are independent if 
any one of these conditions is met:
1) P(Y=y|X=x)=P(Y=y) for any x or 
2) P(X=x|Y=y)=P(X=x) for any y or 
3) P(X=x, Y=y)=P(X=x)·P(Y=y) 
for every pair x and y
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X and Y are Bernoulli variables

Are they independent?
A. yes
B. no
C. I don’t know

Get your i-clickers

Y=1Y=0
1/62/6X=0
1/62/6X=1
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X and Y are Bernoulli variables

Are they independent?
A. yes
B. no
C. I don’t know

Get your i-clickers

Y=1Y=0
01/2X=0
1/20X=1
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Joint Probability Density Function Defined
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Figure 5-2  Joint probability 
density function for the random 
variables X and Y.  Probability that 
(X, Y) is in the region R is 
determined by the volume of 
fXY(x,y) over the region R.

The joint probability density function for the continuous random 
variables X and Y, denotes as fXY(x,y), satisfies the following 
properties:



Joint Probability Density Function Graph
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Figure 5-3  Joint probability density function for the 
continuous random variables X and Y of expression 
levels of two different genes.  Note the asymmetric, 
narrow ridge shape of the PDF – indicating that small 
values in the X dimension are more likely to occur 
when small values in the Y dimension occur.



Marginal Probability Distributions (continuous)

• Rather than summing a discrete joint PMF, we 
integrate a continuous joint PDF.

• The marginal PDFs are used to make probability 
statements about one variable.

• If the joint probability density function of random 
variables X and Y is fXY(x,y), the marginal 
probability density functions of X and Y are:
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Conditional Probability Density Function Defined

Sec 5-1.3 Conditional Probability 
Distributions 15

Given continuous random variables 𝑋 and 𝑌 with 
joint probability density function 𝑓௑௒ 𝑥,𝑦 , 
the conditional probability densiy function of 𝑌 given 𝑋ൌx is
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which satifies the following properties:
ሺ1ሻ   𝑓௒|௫ 𝑦 ൒ 0

ሺ2ሻ  න𝑓௒|௫ 𝑦 𝑑𝑦 ൌ 1

ሺ3ሻ  𝑃 𝑌 ⊂ 𝐵|𝑋 ൌ 𝑥 ൌ න𝑓௒|௫ 𝑦 𝑑𝑦 for any set B in the range of Y
஻

Compare to discrete: P(Y=y|X=x)=fXY(x,y)/fX(x)



Conditional Probability Distributions

• Conditional probability distributions can be 
developed for multiple random variables by 
extension of the ideas used for two random 
variables.

• Suppose p = 5 and we wish to find the distribution of 
X1, X2 and X3 conditional on X4=x4 and X5=x5.

Sec 5-1.5 More Than Two Random 
Variables 16
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for 𝑓௑ర௑ఱ 𝑥ସ, 𝑥ହ ൐ 0.



Independence for Continuous Random Variables

For random variables X and Y, if any one of the following 
properties is true, the others are also true.  Then X
and Y are independent.
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P(Y=y|X=x)=P(Y=y) for any x or 
P(X=x|Y=y)=P(X=x) for any y or 
P(X=x, Y=y)=P(X=x)·P(Y=y) for any x and y



Covariation,
Correlations

Quick and dirty check for 
linear (in)dependence 

between variables



Covariance Defined

Sec 5-2 Covariance & Correlation 19
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Covariance and PMF tables

Sec 5-2 Covariance & Correlation 22

The probability  distribution of Example 5-1 is shown.

By inspection, note that the larger probabilities occur as X
and Y move in opposite directions.  This indicates a negative 
covariance.

1 2 3
1 0.01 0.02 0.25
2 0.02 0.03 0.20
3 0.02 0.10 0.05
4 0.15 0.10 0.05

x =  number of bars 
of signal strength

y =  number of 
times city 

name is stated



Covariance and Scatter Patterns
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Figure 5-13  Joint probability distributions and the sign of cov(X, Y).  
Note that covariance is a measure of linear relationship.  Variables 
with non-zero covariance are correlated.



Independence Implies σ=ρ = 0 but not vice versa

• If X and Y are independent random variables,
σXY = ρXY = 0 (5-17)

• ρXY = 0 is necessary, but not a sufficient 
condition for independence.  
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NOT independent
covariance=0

Independent
covariance=0



Correlation is “normalized covariance”

• Also called: 
Pearson correlation 
coefficient 

ρXY=σXY /σXσY
is the covariance 
normalized to 
be -1 ≤ ρXY ≤ 1

Karl Pearson (1852– 1936) 
English mathematician and biostatistician







Spearman rank correlation
• Pearson correlation tests for linear relationship between 

X and Y
• Unlikely for variables with broad distributions  non-

linear effects dominate
• Spearman correlation tests for any 

monotonic relationship between X and Y  
• Calculate ranks (1 to n), rX(i) and rY(i) of variables in both 

samples. Calculate Pearson correlation between ranks: 
Spearman(X,Y) = Pearson(rX, rY) 

• Ties: convert to fractions, e.g. tie for 6s and 7s place 
both get 6.5. This can lead to artefacts. 

• If lots of ties: use Kendall rank correlation (Kendall tau)
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X and Y are uniformly distributed in 
the disc x2+y2≤1

Are they independent?

A. yes
B. no
C. I could not figure it out

Get your i-clickers
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Matlab exercise: Correlation/Covariation
• Generate a sample with Stats=100,000 of 

two Gaussian random variables r1 and r2 
which have mean 0 and standard deviation 2 
and are:
– Uncorrelated
– Correlated with correlation coefficient 0.9
– Correlated with correlation coefficient -0.5
– Trick: first make uncorrelated r1 and r2. Then make 

anew variable: r1mix=mix.*r2+(1-mix.^2)^0.5.*r1; 
where mix= corr. coeff.

• For each value of mix calculate covariance and 
correlation coefficient between r1mix and r2

• In each case make а scatter plot: plot(r1mix,r2,’k.’);



Matlab exercise: Correlation/Covariation
1. Stats=100000;
2. r1=2.*randn(Stats,1);
3. r2=2.*randn(Stats,1);
4. disp('Covariance matrix='); disp(cov(r1,r2));
5. disp('Correlation=');disp(corr(r1,r2));
6. figure; plot(r1,r2,'k.');
7. mix=0.9; %Mixes r2 to r1 but keeps same variance
8. r1mix=mix.*r2+sqrt(1-mix.^2).*r1;
9. disp('Covariance matrix='); disp(cov(r1mix,r2));
10.disp('Correlation=');disp(corr(r1mix,r2));
11.figure; plot(r1mix,r2,'k.');
12.mix=-0.5; %REDO LINES 8-11
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