
Fitting a Gaussian distribution:
a biological example



Molecular binding is used at multiple levels
Each level has its own molecular interaction network 
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Biological example of a Gaussian:
Energy of Protein-Protein Binding Interactions

• Proteins and other biomolecules 
(metabolites, drugs, DNA) specifically 
(and non-specifically) bind each other

• For specific bindings: Lock-and-Key theory
• For non-specific bindings:

random contacts



Most Binding energy is due to hydrophobic amino-acid residues 
being screened from water

Predicted Gaussian distribution: PDF(Eij=E)– because Eij – sum of 
hydrophobicities of many independent residues



Matlab exercise
• In Matlab load PINT_binding_energy.mat with binding energy Eij (in 

units of kT at room temperature) for 430 pairs of interacting proteins 
from human, yeast, etc.

• Data collected in 2007 from the PINT database 
http://www.bioinfodatabase.com/pint/
and analyzed in J. Zhang, S. Maslov, E. Shakhnovich, Molecular 
Systems Biology (2008)

• Fit Gaussian to the distribution of Eij using dfittool
• Use “Exclude” button to generate the new exclusion rule to drop all 

points with  X<-23 from the fit
• Use "New Fit" button to generate the new “Normal” fit with the 

exclusion rule you just created
• Find mean (mu) and standard deviation (sigma)
• Select “probability plot” from “Display type” dropdown menu to 

evaluate the quality of the plot. Where does the probability plot 
deviate from a straight line?



How does it compare with the experimental data ?

Data on binding interactions 
from PINT database

J. Zhang, S. Maslov, E. Shakhnovich, 
Nature/EMBO Molecular Systems Biology (2008)



Dissociation constant 

• Interaction between two molecules (say, proteins) 
is usually described in terms of dissociation 
constant 
Kij=1M exp(-Eij/kT)

• Law of Mass Action: the concentration Dij of a 
heterodimer formed out of two proteins with free 
(monomer) concentrations Ci  and Cj : Dij=CiCj/Kij

• What is the distribution of Kij?
• Answer: it is called log-normal since the logarithm 

of Kij is the binding energy -Eij/kT which is normally 
distributed



Lognormal Distribution
• Let W denote a normal random variable with mean of θ and 

variance of ω2, i.e., E(W) = θ and V(W) = ω2

• As a change of variable, let X = eW = exp(W) and W = ln(X)
• Now X is a lognormal random variable.
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Lognormal Graphs
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Figure 4-27  Lognormal probability density functions 
with θ = 0 for selected values of ω2.



Credit: XKCD 
comics 



Multiple random variables,
Correlations



What we learned so far…
• Random Events:

– Working with events as sets: union, intersection, etc.
• Some events are simple: Head vs Tails, Cancer vs Healthy
• Some are more complex: 10<Gene expression<100
• Some are even more complex: Series of dice rolls: 1,3,5,3,2

– Conditional probability:  P(A|B)=P(A ∩ B)/P(B)
– Independent events: P(A|B)=P(A) or P(A ∩ B)= P(A)*P(B)
– Bayes theorem: relates P(A|B) to P(B|A)

• Random variables:
– Mean, Variance, Standard deviation. How to work with E(g(X))
– Discrete (Uniform, Bernoulli, Binomial, Poisson, Geometric, Negative 

binomial, Power law); 
PMF: f(x)=Prob(X=x); CDF: F(x)=Prob(X≤x);

– Continuous (Uniform, Exponential, Erlang, Gamma, Normal, Log-
normal);
PDF: f(x) such that Prob(X inside A)= ∫A f(x)dx; CDF: F(x)=Prob(X≤x)

• Next step: work with multiple random variables measured 
together in the same series of random experiments



Concept of Joint Probabilities

• Biological systems are usually described not by a 
single random variable but by many random 
variables

• Example: The expression state of a human cell: 
20,000 random variables Xi for each of its genes

• A joint probability distribution describes the 
behavior of several random variables

• We will start with just two random variables 
X and Y and generalize when necessary

Chapter 5 Introduction 13



Joint Probability Mass Function Defined

Sec 5-1.1 Joint Probability Distributions 14
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Example 5-1:  # Repeats vs. Signal Bars
You use your cell phone to check your airline reservation. It asks you to speak 

the name of your departure city to the voice recognition system.
• Let Y denote the number of times you have to state your departure city.
• Let X denote the number of bars of signal strength on you cell phone.
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Figure 5-1  Joint probability 
distribution of X and Y.  The table cells 
are the probabilities.  Observe that 
more bars relate to less repeating.
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1 0.01 0.02 0.25
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3 0.02 0.10 0.05
4 0.15 0.10 0.05

x =  number of bars 
of signal strength

y =  number of 
times city 

name is stated



Marginal Probability Distributions (discrete)
For a discrete joint PDF, there are marginal distributions 

for each random variable, formed by summing the 
joint PMF over the other variable.
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1 2 3 f Y (y ) =
1 0.01 0.02 0.25 0.28
2 0.02 0.03 0.20 0.25
3 0.02 0.10 0.05 0.17
4 0.15 0.10 0.05 0.30

f X (x ) = 0.20 0.25 0.55 1.00

x =  number of bars of 
signal strength

y =  number of 
times city name 

is stated

Figure 5-6  From the prior example, 
the joint PMF is shown in green 
while the two marginal PMFs are 
shown in purple.

Called marginal 
because they are 
written in the margins



Mean & Variance of X and Y are calculated 
using marginal distributions
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1 2 3 f (y ) = y *f (y ) = y 2*f (y ) =
1 0.01 0.02 0.25 0.28 0.28 0.28
2 0.02 0.03 0.20 0.25 0.50 1.00
3 0.02 0.10 0.05 0.17 0.51 1.53
4 0.15 0.10 0.05 0.30 1.20 4.80

f (x ) = 0.20 0.25 0.55 1.00 2.49 7.61
x *f (x ) = 0.20 0.50 1.65 2.35

x 2*f (x ) = 0.20 1.00 4.95 6.15

x =  number of bars 
of signal strength

y =  number of 
times city 

name is stated

μX =E(X) = 2.35;    σX
2 = V(X) = 6.15 – 2.352 = 6.15  – 5.52 = 0.6275

μY= E(Y) = 2.49;    σY
2 = V(Y) = 7.61 – 2.492 = 7.61 – 16.20 = 1.4099



Conditional Probability Distributions

From Example 5-1
P(Y=1|X=3) = 0.25/0.55 = 0.455
P(Y=2|X=3) = 0.20/0.55 = 0.364
P(Y=3|X=3) = 0.05/0.55 = 0.091
P(Y=4|X=3) = 0.05/0.55 = 0.091

Sum = 1.00

Sec 5-1.3 Conditional Probability 
Distributions 18

Recall that 𝑃 𝐵|𝐴 ൌ
𝑃 𝐴 ∩ 𝐵
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1 2 3 f Y (y ) =
1 0.01 0.02 0.25 0.28
2 0.02 0.03 0.20 0.25
3 0.02 0.10 0.05 0.17
4 0.15 0.10 0.05 0.30

f X (x ) = 0.20 0.25 0.55 1.00

x =  number of bars of 
signal strength

y =  number of 
times city name 

is stated

Note that there are 12 probabilities conditional on X, and 12 
more probabilities conditional upon Y.

P(Y=y|X=x)=P(X=x,Y=y)/P(X=x)=
=f(x,y)/fX(x)



Reminder



Statistically independent events
Always true: P(A∩B)=P(A|B)·P(B)=P(B|A)·P(A)



Joint Random Variable Independence
• Random variable independence means 

that knowledge of the value of X does 
not change any of the probabilities 
associated with the values of Y. 

• Opposite: Dependence implies that the 
values of X are influenced by the values 
of Y

Sec 5-1.4 Independence 21



Independence for Discrete Random Variables

• Remember independence of events 
(slide 13 lecture 4) :  Events are independent if 
any one of the three conditions are met:
1) P(A|B)=P(A ∩ B)/P(B)=P(A) or 
2) P(B|A)= P(A ∩ B)/P(A)=P(B) or 
3) P(A ∩ B)=P(A) · P(B)

• Random variables independent if all events
A that Y=y and B that X=x are independent if 
any one of these conditions is met:
1) P(Y=y|X=x)=P(Y=y) for any x or 
2) P(X=x|Y=y)=P(X=x) for any y or 
3) P(X=x, Y=y)=P(X=x)·P(Y=y) 
for every pair x and y
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X and Y are Bernoulli variables

Are they independent?
A. yes
B. no
C. I don’t know

Get your i-clickers

Y=1Y=0
1/62/6X=0
1/62/6X=1
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X and Y are Bernoulli variables

Are they independent?
A. yes
B. no
C. I don’t know

Get your i-clickers

Y=1Y=0
01/2X=0
1/20X=1


