Probability Density Function (PDF)

Density functions, in contrast to mass functions, distribute probability continuously along an interval

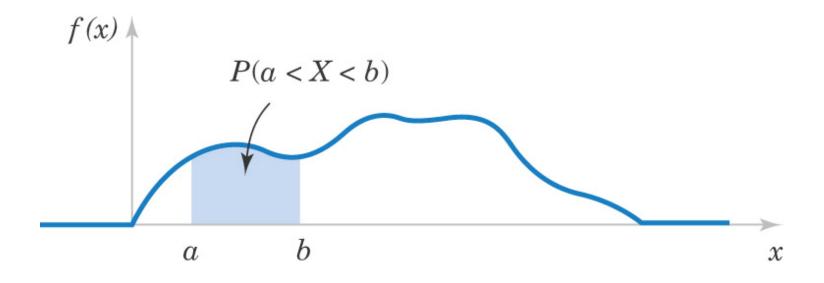


Figure 4-2 Probability is determined from the area under f(x) from a to b.

X is a continuous random variable with a uniform distribution between 0 and 5. What is Probability(X=2)?

- A. 1/6
- B. 1/5
- C. 0
- D. Infinity
- E. I have no idea

X is a continuous random variable with a uniform distribution between 0 and 5. What is Probability(X=2)?

- A. 1/6
 B. 1/5
 C. 0
 - D. Infinity
 - E. I have no idea

X is a continuous random variable with a uniform distribution between 0 and 5. What is Probability(X<=2)?

- A. 3/6
- B. 3/5
- C. 0
- D. 2/5
- E. I have no idea

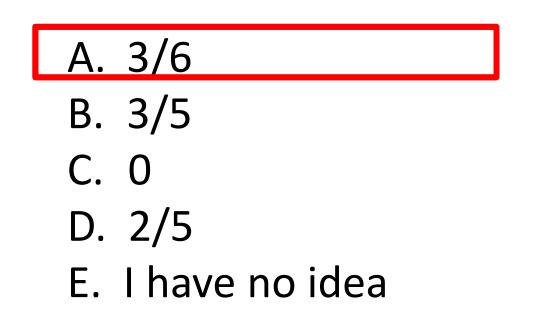
X is a continuous random variable with a uniform distribution between 0 and 5. What is Probability(X<=2)?

A. 3/6
B. 3/5
C. 0
D. 2/5
E. I have no idea

X is a <u>discrete</u> random variable with a uniform distribution between 0 and 5. What is Probability(X<=2)?

- A. 3/6
- B. 3/5
- C. 0
- D. 2/5
- E. I have no idea

X is a continuous random variable with a uniform distribution between 0 and 5. What is Probability(X<=2)?



Constant vale (POTSSON) process
is a second happen at rate F
discrete events happen at rate F
Expected humber of events in time x
is fx
The actual number of events Not
is a Poisson distributed discrete
random variable

$$P(N=n) = (\frac{Tx}{h!}e^{-Fx})$$

Why Poisson? Divide X into many
ting intervals of Length Dx
 $p = Fax$
 $p = Fax$
 $p = role(N=n) = (\frac{L}{n})p^n(1-p)^{L-n}$
 $y = role(N=n) = (\frac{L}{n})p^n(1-p)^{L-n}$

 $E(N_{r}) = pL = \Gamma x$ poisson

Constant rate (AKA Poisson) processes

- Let's assume that proteins are produced by ribosomes in the cell at a rate r per second.
- The expected number of proteins produced in x seconds is $r \cdot x$.
- The actual number of proteins N_x is a discrete random variable following a Poisson distribution with mean r·x:

 $P_N(N_x=n)=exp(-r\cdot x)(r\cdot x)^n/n! \quad E(N_x)=rx$

- Why Discrete Poisson Distribution?
 - Divide time into many tiny intervals of length $\Delta x \ll 1/r$
 - The probability of success (protein production) per internal is small: p_success=r∆x <<1,
 - The number of intervals is large: $n = x/\Delta x >> 1$
 - Mean is constant: $r=E(N_x)=p_success \cdot n = r\Delta x \cdot x/\Delta x = r \cdot x$
 - In the limit Δx <<x, p_success is small and n is large, thus
 Binomial distribution → Poisson distribution

Exponential Distribution Definition Exponential random variable *X* describes interval between two successes of a constant rate (Poisson) random process with success rate r per unit interval.

The probability density function of X is:

$$f(x) = re^{-rx}$$
 for $0 \le x < \infty$

Closely related to the discrete geometric distribution $f(x) = p(1-p)^{x-1} = p e^{(x-1) \ln(1-p)} \approx pe^{-px}$ for small p

To summarize constant rate processes: Time ID V - rate per unit of length = N(x) - disrese number of events in time \mathcal{R} Poisson: $P(N(x)=h) = \frac{(r,x)^n}{h!} e^{-r\cdot x}$ Time interval X between 5400essive events is 2 continuously distributed random variable Jts PDF if $f(x) = e^{-rx}$

What is the interval X between two successes of a constant rate process?

- X is a continuous random variable
- CCDF: $P_X(X>x) = P_N(N_X=0)=exp(-r\cdot x)$.

- Remember: $P_N(N_X=n)=exp(-r\cdot x) (r\cdot x)^n/n!$

- PDF: $f_X(x) = -dCCDF_X(x)/dx = r \cdot exp(-r \cdot x)$
- We started with a discrete Poisson distribution where time x was a parameter
- We ended up with a continuous exponential distribution

Exponential Mean & Variance

If the random variable *X* has an exponential distribution with rate r,

 $\mu = E(X) = \frac{1}{r}$ and $\sigma^2 = V(X) = \frac{1}{r^2}$ (4-15)

Note that, for the:

- Poisson distribution: mean= variance
- Exponential distribution: mean = standard deviation = variance^{0.5}

Biochemical Reaction Time

• The time x (in minutes) until all enzymes in a cell catalyze a biochemical reaction and generate a product is approximated by this CCDF:

 $F_{>}(x) = e^{-2x}$ for $0 \le x$

Here the rate of this process is r=2 min⁻¹ and 1/r=0.5 min is the average time between successive products of these enzymes

• What is the PDF?

$$f(x) = -\frac{dF_{>}(x)}{dx} = -\frac{d}{dx}e^{-2x} = 2e^{-2x} \text{ for } 0 \le x$$

• What proportion of reactions will not generate another product within 0.5 minutes of the previous product? $P(X > 0.5) = F_{>}(0.5) = e^{-2*0.5} = 0.37$ We observed our cell for 1 minute and no product has been generated: The product is "overdue"

What is the probability that a product will not appear during the next 0.5 minutes?

$$F_{>}(x) = e^{-2x}$$

 $F_{>}(0.5) \approx 0.37$
 $F_{>}(1.5) \approx 0.05$
 $F_{>}(1.0) \approx 0.13$

A. 0.32
B. 0.37
C. 0.08
D. 0.24

E. I have no idea

Memoryless property of the exponential distribution $P(X>t_{+}S|X>S) = P(X>t)$ $P(X>t+s | X>s) = \frac{P(X>t+s, X>s)}{P(X>s)} =$ $= \frac{e \times p(-\Gamma(t+s))}{e \times p(-\Gamma s)} = \frac{e \times p(-\Gamma t)}{e \times p(-\Gamma t)} =$ $= \mathcal{P}(X > t)$

Exponential is the only memoryless distribution

Matlab exercise:

- Generate a sample of 100,000 variables from Exponential distribution with r =0.1
- Calculate mean and compare it to 1/r
- Calculate standard deviation and compare it to 1/r
- Plot semilog-y plots of PDFs <u>and CCDFs</u>.
- Hint: read the help page (better yet documentation webpage) for random('Exponential'...) one of their parameters is different than r

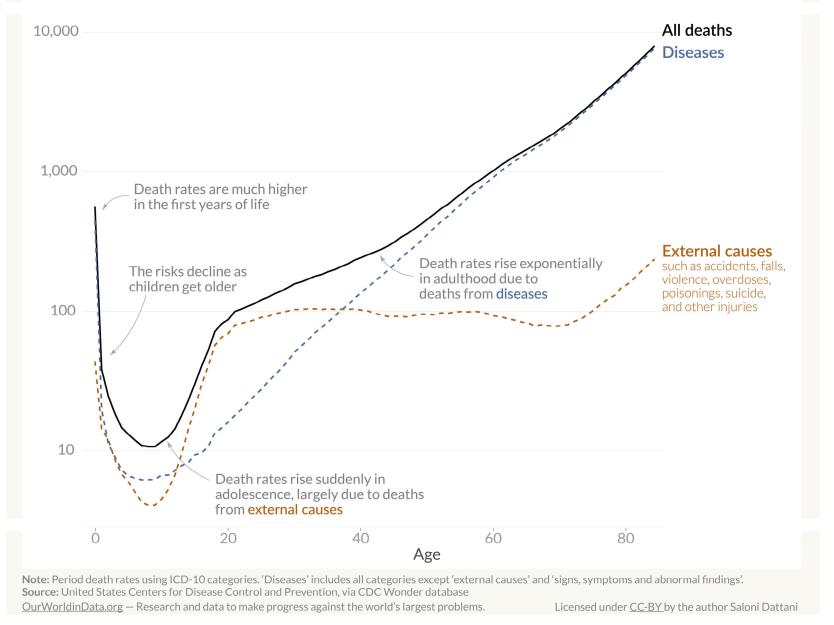
Matlab exercise: Exponential

- Stats=100000; r=0.1;
- r2=random('Exponential', 1./r, Stats,1);
- disp([mean(r2),1./r]); disp([std(r2),1./r]);
- step=1; [a,b]=hist(r2,0:step:max(r2));
- pdf_e=a./sum(a)./step;
- subplot(1,2,1); semilogy(b,pdf_e,'rd-');
- x=0:0.01:max(r2);
- for m=1:length(x);
- ccdf_e(m)=sum(r2>x(m))./Stats;
- end;
- subplot(1,2,2); semilogy(x,ccdf_e,'ko-');

Death rates across ages

National data from the United States between 2018 and 2021.

Annual death rate, per 100,000 people (log scale)

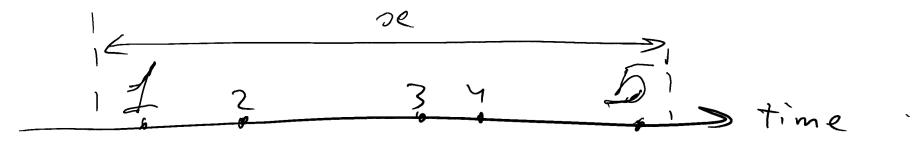


https://ourworldindata.org/how-do-the-risks-of-death-change-as-people-age

Erlang Distribution

- The Erlang distribution is a generalization of the exponential distribution.
- The exponential distribution models the time interval to the 1st event, while the
- Erlang distribution models the time interval to the kth event, i.e., a sum of k exponentially distributed variables.
- The exponential, as well as Erlang distributions, is based on the constant rate (or Poisson) process.

Constant vale (POISSON) process



Events happen independently from each other at <u>Constant rate=F</u>: E[N_x]=Fix X follows Erlang distribution $f(X > x) = \sum P(N_x = n) =$ $= \sum_{n=1}^{\infty} \frac{n}{n} \frac{n}{e} \frac{1}{rx}$

Erlang Distribution

Generalizes the Exponential Distribution: waiting time until k's events (constant rate process with rate=r)

$$P(X > x) = \sum_{m=0}^{k-1} \frac{e^{-rx}(rx)^m}{m!} = 1 - F(x)$$

Differentiating F(x) we find that all terms in the sum except the last one cancel each other:

 $f(x) = \frac{r^k x^{k-1} e^{-rx}}{(k-1)!} \text{ for } x > 0 \text{ and } k = 1, 2, 3, \dots$

Gamma Distribution

The random variable *X* with a probability density function:

$$f(x) = \frac{r^k x^{k-1} e^{-rx}}{\Gamma(k)}, \text{ for } x > 0$$

$$(4-18)$$

has a gamma random distribution with parameters r > 0 and k > 0. If k is a positive integer, then X has an Erlang distribution.

$$f(x) = \frac{r^k x^{k-1} e^{-rx}}{\Gamma(k)}, \text{ for } x > 0$$

$$\int_{0}^{+\infty} f(x) dx = 1, \text{ Hence}$$

$$\Gamma(k) = \int_{0}^{+\infty} r^{k} x^{k-1} e^{-rx} dx = \int_{0}^{+\infty} y^{k-1} e^{-y} dy$$

Comparing with Erlang distribution for integer k one gets $\Gamma(k) = (k-1)!$

Gamma Function

The gamma function is the generalization of the factorial function for r > 0, not just non-negative integers.

$$\Gamma(k) = \int_{0}^{\infty} y^{k-1} e^{-y} dy, \quad \text{for } r > 0 \quad (4-17)$$

Properties of the gamma function

$$\Gamma(1) = 1$$

$$\Gamma(k) = (k - 1)\Gamma(k - 1) \text{ recursive property}$$

$$\Gamma(k) = (k - 1)! \text{ factorial function}$$

$$\Gamma\left(\frac{1}{2}\right) = \pi^{\frac{1}{2}} = 1.77 = \left(-\frac{1}{2}\right)! \text{ interesting fact}$$