Statistics of cancer incidence vs age

Fig. 1.—Diagram drawn to double logarithmic (log/log) scale showing the cancer death-rate (in the case of the United Kingdom, the carcinoma death-rate) in males at different ages. Deaths per 100,000 males are shown on the vertical scale, age figures on the horizontal scale.

Multi-mutation theory of cancer: Carl O. Nordling (British J. of Cancer, March 1953):

Cancer death rate ~ (patient age)⁶

It suggests the existence of k=7 driver genes

$$P(T_{cancer} \le t) \sim (u_1 t)(u_2 t)..(u_k t) \sim u_1 u_2...u_k t^k$$

$$P(T_{cancer} = t) \sim \frac{d}{dt} (u_1 t) (u_2 t) ... (u_k t) \sim k u_1 u_2 ... u_k t^{k-1}$$

How many driver gene mutations for different types of cancer?

Only three driver gene mutations are required for the development of lung and colorectal cancers

Cristian Tomasetti^{a,b,1}, Luigi Marchionni^c, Martin A. Nowak^d, Giovanni Parmigiani^e, and Bert Vogelstein^{f,g,1}

^aDivision of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, and ^bDepartment of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; ^cCancer Biology Program, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205; ^dProgram for Evolutionary Dynamics, Department of Mathematics, Harvard University, Cambridge, MA 02138; ^eDepartment of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02215; and ^fLudwig Center for Cancer Genetics and Therapeutics and ^gHoward Hughes Medical Institute, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205

Contributed by Bert Vogelstein, November 21, 2014 (sent for review July 31, 2014; reviewed by Zvia Agur)

LUAD incidence fold increase in smokers

Number of driver mutations

Smokers have 3.23 times more mutations in lungs

FIGURE 21.10 Somatic mutations in representative human cancers, based on genome-wide sequencing studies. (a) The genomes of adult (right) and pediatric (left) cancers are represented. Numbers in parentheses are the median number of nonsynonymous mutations per tumor. Redrawn from Vogelstein *et al.* (2013). Reproduced with permission from AAAS. (b) Median number of nonsynonymous substitutions per tumor. Horizonal bars indicate the 25% and 75% quartiles. MSI: microsatellite instability; SCLC: small cell lung cancers; NSCLC: non-small cell lung cancers; ESCC: esophageal squamous cell carcinomas; MSS: microsatellite stable; EAC: esophageal adenocarcinomas.

Bioinformatics and Functional Genomics, Third Edition, Jonathan Pevsner. © 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd. Companion Website: www.wiley.com/go/pevsnerbioinformatics

- Cancer cells carry both "Driver" and "Passengers" mutations
- Passenger mutations cause
 little to no harm (see later for
 how even little harm matters)
- Both are common as cancers elevate mutation rate

Number of passenger+driver mutations follows negative binomial distribution

- What is the probability to have n_p passenger mutations or (n_p+k) total mutations by the time you are diagnosed with cancer requiring k driver mutations?
- Let p is the probability that a mutation is a driver (p= Genome_target_of_driv/ (Genome_target_of_driv+Genome_target_of_pass) (1-p) – it is a passenger mutation

$$P(n_p + k \mid p, k) = \binom{n_p + k - 1}{n_p} (1 - p)^{n_p} p^k$$

What if passenger mutations slow down the growth of cancer tumors?

McFarland CD, Mirny L, Korolev KS, PNAS 2014

Can we prove/quantify it using statistics?

Assume: growth rate of cancer= $(1+s_d)^{Nd}/(1+s_p)^{Np}$ $\mu=10^{-8}$, Target_d=1,400, Target_p=10⁷, s_d=0.05 to 0.4, s_p=0.001 s_p/s_d for breast: 0.0060±0.0010; melanoma: 0.016±0.003; lung: 0.0094±0.0093; Blue - data on breast cancer: incidence; non-synonymous mutations

Important terms & concepts for discrete random variables

- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- <u>Complementary Cumulative Distribution</u> <u>Function (CCDF)</u>
- <u>Expected value</u>
- <u>Mean</u>
- Variance
- Standard deviation

<u>Boldface and</u> <u>underlined</u> are the same for continuous distributions

$$\binom{n}{x} p^x (1-p)^{n-x}$$

- A. Uniform
- B. Binomial
- C. Geometric
- D. Negative Binomial
- E. Poisson

$$\binom{n}{x} p^x (1-p)^{n-x}$$

- A. Uniform
- B. Binomial
- C. Geometric
- D. Negative Binomial
- E. Poisson

$$\binom{x-1}{r-1}(1-p)^{x-r}p^r$$

- A. Uniform
- B. Binomial
- C. Geometric
- D. Negative Binomial
- E. Poisson

$$\binom{x-1}{r-1}(1-p)^{x-r}p^r$$

- A. Uniform
- B. Binomial
- C. Geometric
- D. Negative Binomial
- E. Poisson

- A. Uniform
- B. Binomial
- C. Geometric
- D. Negative Binomial
- E. Poisson

- A. Uniform
- B. Binomial
- C. Geometric
- D. Negative Binomial

E. Poisson

Name	Distribution	Mean	Variance
Discrete			
Uniform	$\frac{1}{n}, a \le b$	$\frac{(b+a)}{2}$	$\frac{(b-a+1)^2 - 1}{12}$
Binomial	$\binom{n}{x}p^{x}(1-p)^{n-x},$	пр	np(1-p)
	$x=0,1,\ldots,n,0\leq p\leq 1$		
Geometric	$(1-p)^{x-1}p,$ $x = 1, 2, \dots, 0 \le p \le 1$	1/p	$(1-p)/p^2$
Negative binomial	$\binom{x-1}{r-1}(1-p)^{x-r}p^r$	r/p	$r(1-p)/p^2$
	$x = r, r + 1, r + 2, \dots, 0 \le p \le 1$		
Poisson	$\frac{e^{-\lambda}\lambda^x}{x!}, x = 0, 1, 2, \dots, 0 < \lambda$	λ	λ

What distributions we learn

- Uniform distribution
- Bernoulli distribution/trial
- Binomial distribution
- Poisson distribution
- Geometric distribution
- Negative binomial distribution

Why do we need to know these simple distributions?

Ways to use statistics

- To process your experimental data
 - What do you need? Mean, Variance, Standard deviation. No need to know any textbook distributions
- To plan experiments
 - Need to know distributions, e.g., Poisson to plan how much redundancy to use for genome assembly
- To learn biological processes behind your data
 - Need to know distributions to compare empirical distributions in your data to what you expect based on a simple hypothesis

Uniform distribution

Examples of uniform distribution: Ct value of PCR test of a virus

IFigure 3 Distribution of cycle threshold (CT) values. The total number of specimens with indicated CT values for Target 1 and 2 are plotted. The estimated limit of detection for (A) Target 1 and (B) Target 2 are indicated by vertical dotted lines. Horizontal dotted lines encompass specimens with CT values less than 3× the LoD for which sensitivity of detection may be less than 100%. This included 19/1,180 (1.6%) reported CT values for Target 1 and 81/1,211 (6.7%) reported CT values for Target 2. Specimens with Target 1 or 2 reported as "not detected" are denoted as a CT value of "0."

Distribution of SARS-CoV-2 PCR Cycle Threshold Values Provide Practical Insight Into Overall and Target-Specific Sensitivity Among Symptomatic Patients Blake W Buchan, PhD, Jessica S Hoff, PhD, Cameron G Gmehlin, Adriana Perez, Matthew L Faron, PhD, L Silvia Munoz-Price, MD, PhD, Nathan A Ledeboer, PhD *American Journal of Clinical Pathology*, Volume 154, Issue 4, 1 October 2020, <u>https://academic.oup.com/ajcp/article/154/4/479/5873820</u>

Why should we care?

- High Ct value means we identified the infected individual early, hopefully before transmission to others
- When testing is mandatory, and people are tested frequently – Ct value is skewed towards high values

Negative binomial distribution

Statistics of cancer incidence vs age

Fig. 1.—Diagram drawn to double logarithmic (log/log) scale showing the cancer death-rate (in the case of the United Kingdom, the carcinoma death-rate) in males at different ages. Deaths per 100,000 males are shown on the vertical scale, age figures on the horizontal scale.

Multi-mutation theory of cancer: Carl O. Nordling (British J. of Cancer, March 1953):

Cancer death rate ~ (patient age)⁶

It suggests the existence of k=7 driver genes

$$P(T_{cancer} \le t) \sim (u_1 t)(u_2 t)..(u_k t) \sim u_1 u_2...u_k t^k$$

$$P(T_{cancer} = t) \sim \frac{d}{dt} (u_1 t) (u_2 t) ... (u_k t) \sim k u_1 u_2 ... u_k t^{k-1}$$

Can we prove/quantify it using statistics?

Assume: growth rate of cancer= $(1+s_d)^{Nd}/(1+s_p)^{Np}$ $\mu=10^{-8}$, Target_d=1,400, Target_p=10⁷, s_d=0.05 to 0.4, s_p=0.001 s_p/s_d for breast: 0.0060±0.0010; melanoma: 0.016±0.003; lung: 0.0094±0.0093; Blue - data on breast cancer: incidence; non-synonymous mutations

Poisson and Exponential Distributions

F. William Studier

- Worked at Brookhaven National Laboratory, Long Island, NY since 1964
- Inventor of slab gel electrophoresis in 1970 (not patented- back then no incentive to patent work if you are supported by the US government)
- Inventor of T7 phage expression system for fast production of proteins. Licensed by over 900 companies, generated over \$55 million for the lab https://en.wikipedia.org/wiki/T7_expressi on_system
- In 2024 he was awarded \$400,000 Merkin Prize in Biomedical Technology (Broad Institute of MIT and Harvard) "for development of widely used protein- and RNA-production platform" <u>https://merkinprize.org/2024-pr</u>

K-12 and B are the most common lab strains of E. coli

- B strain can be traced back to d'Hérelle(Lambda-phage), Pasteur Institute, Delbruck, Rockefeller U., Studier and Rich Lenski LTEE
- K-12 was isolated in 1922 at Palo Alto hospital. First sequenced genome
- Both have ~4000 genes in roughly the same order

Yoon et al. Genome Biology 2012, 13:R37 http://genomebiology.com/2012/13/5/R37

Open Access

RESEARCH

Comparative multi-omics systems analysis of *Escherichia coli* strains B and K-12

Sung Ho Yoon¹, Mee-Jung Han^{2,3}, Haeyoung Jeong¹, Choong Hoon Lee^{1,4,5}, Xiao-Xia Xia², Dae-Hee Lee¹, Ji Hoon Shim¹, Sang Yup Lee^{2,6}, Tae Kwang Oh⁷ and Jihyun F Kim^{1,5*}

K-12 vs BL21(DE3) strains of E. coli

Studier FW, Daegelen P, Lenski RE, Maslov S, Kim JF, J. Mol Biol. (2009)

Highly variable segments are clustered

Model of bacterial evolution by mutations and homologous recombination

- Mutation rate μ (bp/generation)
- Recombination rate ρ (bp/generation)
- I_R average length of recombined segments
- $\theta = 2\mu N_e$ depending on N_e (effective) population size
- δ_{TE} transfer efficiency: Prob(successful transfer + recombination): ~ exp(-δ/δ_{TE})

Dixit P, Pang TY, Studier FW, Maslov S, PNAS (2015); arXiv:1405.2548

Why exponential tail?

- Empirical data for E. coli: Prob(δ)=exp(- δ /0.01) Similar slopes in other species as distant as B. subtilis
- Theory 1: PopGen 101 coalescence time distribution:
 - Prob(T) ~ exp(-T/N_e) \rightarrow Prob(δ) ~ exp(- δ / 2 μ N_e) = <u>exp(- δ / θ)</u> θ = 2 μ N_e~0.01, μ ~10⁻¹⁰ \rightarrow N_e~10⁸
- Theory 2: <u>biophysics of homologous recombination</u>:
 - Requires perfect matches of L=30bp on each side \rightarrow Prob(δ)=(1- δ)^{2L}=exp(-60• δ)=exp(- δ /0.016)=<u>exp(- δ / δ _{TE})</u>
- Both mechanisms likely to work together: <u>biophysics of recombination affects the</u> <u>effective population size</u>

Continuous Probability Distributions

Uniform Distribution

Continuous & Discrete Random Variables

- A discrete random variable is usually integer number
 - N the number of proteins in a cell
 - D- number of nucleotides different between two sequences
- A continuous random variable is a real number
 - C=N/V the concentration of proteins in a cell of volume V
 - Percentage D/L*100% of different nucleotides in protein sequences of different lengths L (depending on set of L's may be discrete but dense)

Probability Mass Function (PMF)

X – discrete random variable

Probability Mass
 Function: f(x)=P(X=x)
 – the probability that
 X is exactly equal to x

Probability Mass Function for the # of mismatches in 4-mers

P(X=0) =	0.6561	
P(X = 1) =	0.2916	
P(X = 2) =	0.0486	
P(X = 3) =	0.0036	
P(X = 4) =	0.0001	
Σ _x P(X=x)=	1.0000	

Probability Density Function (PDF)

Density functions, in contrast to mass functions, distribute probability continuously along an interval

Figure 4-2 Probability is determined from the area under f(x) from a to b.

Probability Density Function

For a continuous random variable *X*,

a probability density function is a function such that

(1) $f(x) \ge 0$ means that the function is always non-negative. (2) $\int_{-\infty}^{\infty} f(x) dx = 1$ (3) $P(a \le X \le b) = \int_{a}^{b} f(x) dx = \text{area under } f(x) dx \text{ from } a \text{ to } b$

Normalized histogram approximates PDF

A histogram is graphical display of data showing a series of adjacent rectangles. Each rectangle has a base which represents an interval of data values. The height of the rectangle is a number of events in the sample within the base.

When base length is narrow, the histogram could be normalized to approximate PDF (f(x)):

height of each rectangle =

=(# of events within base)/(total # of events)/width of its base.

Normalized histogram approximates a probability density function.

Cumulative Distribution Functions (CDF & CCDF)

The cumulative distribution function (CDF) of a continuous random variable *X* is,

X

$$F(x) = P(X \le x) = \int_{-\infty}^{\infty} f(u) du \text{ for } -\infty < x < \infty \quad (4-3)$$

One can also use the inverse cumulative distribution function or complementary cumulative distribution function (CCDF)

$$F_{>}(x) = P(X > x) = \int_{x} f(u)du \text{ for } -\infty < x < \infty$$

Definition of CDF for a continous variable is the same as for a discrete variable

Density vs. Cumulative Functions

• The probability density function (PDF) is the derivative of the cumulative distribution function (CDF).

$$f(x) = \frac{dF(x)}{dx} = -\frac{dF_{>}(x)}{dx}$$
as long as the derivative exists.

Mean & Variance

Suppose *X* is a continuous random variable with probability density function f(x). The mean or expected value of *X*, denoted as μ or E(X), is

$$\mu = E(X) = \int_{-\infty}^{\infty} xf(x)dx \qquad (4-4)$$

The variance of *X*, denoted as V(X) or σ^2 , is

$$\sigma^{2} = V(X) = \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx = \int_{-\infty}^{\infty} x^{2} f(x) dx - \mu^{2}$$

The standard deviation of V is $\sigma = \sqrt{\sigma^{2}}$

The standard deviation of *X* is $\sigma = \sqrt{\sigma^2}$.

Gallery of Useful Continuous Probability Distributions

Continuous Uniform Distribution

- This is the simplest continuous distribution and analogous to its discrete counterpart.
- A continuous random variable X with probability density function

$$f(x) = 1 / (b - a)$$
 for $a \le x \le b$ (4-6)

Sec 4-5 Continuous Uniform Distribution

Comparison between Discrete & Continuous Uniform Distributions

Discrete:

- PMF: f(x) = 1/(b-a+1)
- Mean and Variance: $\mu = E(x) = (b+a)/2$ $\sigma^2 = V(x) = [(b-a+1)^2-1]/12$

Continuous:

- PMF: f(x) = 1/(b-a)
- Mean and Variance: $\mu = E(x) = (b+a)/2$ $\sigma^2 = V(x) = (b-a)^2/12$

X is a continuous random variable with a uniform distribution between 0 and 3. What is Probability(X=1)?

- A. 1/4
- B. 1/3
- C. 0
- D. Infinity
- E. I have no idea

X is a continuous random variable with a uniform distribution between 0 and 3. What is P(X=1)?

A. 1/4
B. 1/3
C. 0

- D. Infinity
- E. I have no idea

X is a continuous random variable with a uniform distribution between 0 and 3. What is P(X<1)?

- A. 1/4
- B. 1/3
- C. 0
- D. Infinity
- E. I have no idea

X is a continuous random variable with a uniform distribution between 0 and 3. What is P(X<1)?

- D. Infinity
- E. I have no idea

