Homework \#3

Please present 4 significant figures in your final answers for probabilities

1. (20 points) The joint probability mass function of discrete random variables X and Y taking values $x=1,2,3$ and $y=1,2,3$, respectively, is given by a formula $f_{X Y}(x, y)=c^{*}(x+y)$.
Determine the following:
a) (2 points) Find c

Answer: $\sum_{R} f(x, y)=c *(2+3+4+3+4+5+4+5+6)=1, c^{*} 36=1$. Thus, $c=1 / 36$
b) (2 points) Find probability of the event where $\mathrm{X}=1$ and $\mathrm{Y} \leqslant 2$

Answer: $P(X=1, Y \leq 2)=f_{X Y}(1,1)+f_{X Y}(1,2)=\frac{1}{36}(2+3)=5 / 36$
c) (2 points) Find marginal probability $\mathrm{P}_{Y}(\mathrm{Y}=3)$

Answers: $\mathrm{P}(\mathrm{Y}=3)=f_{X Y}(1,3)+f_{X Y}(2,3)+f_{X Y}(3,3)=\frac{1}{36}(4+5+6)=0.4167$
d) (2 points) Marginal probability distribution of the random variable X

Answers: marginal distribution of X

x	$f_{X}(x)=f_{X Y}(x, 1)+f_{X Y}(x, 2)+f_{X Y}(x, 3)$
1	$1 / 4$
2	$1 / 3$
3	$5 / 12$

e) (2 points) $E(X), E(Y), V(X)$, and $V(Y)$

Answers:
$E(X)=\left(1 \times \frac{1}{4}\right)+\left(2 \times \frac{1}{3}\right)+\left(3 \times \frac{5}{12}\right)=13 / 6=2.167$
$V(X)=E(X=1) *(1-2.167)^{2}+E(X=2) *(2-2.167)^{2}+E(X=3) *(3-2.167)^{2}=0.6389$

$$
\begin{aligned}
& E(Y)=2.167 \\
& V(Y)=0.6389
\end{aligned}
$$

f) (2 points) Find conditional probability distribution of Y given that $\mathrm{X}=1$

Answers: $f_{Y \mid X}(y)=\frac{f_{X Y}(1, y)}{f_{X}(1)}$

y	$f_{Y \mid X}(y)$
1	$(2 / 36) /(1 / 4)=2 / 9$
2	$(3 / 36) /(1 / 4)=1 / 3$
3	$(4 / 36) /(1 / 4)=4 / 9$

g) (2 points) Conditional probability distribution of X given that $Y=3$

Answers: $\mathrm{f}_{\mathrm{X} \mid \mathrm{Y}=3}(\mathrm{X})=\frac{f_{X Y}(x, 3)}{f_{Y}(3)}$ and $\mathrm{f}_{\mathrm{Y}}(3)=f_{X Y}(1,3)+f_{X Y}(2,3)+f_{X Y}(3,3)=\frac{1}{36}(4+5+6)$

$$
=0.4167
$$

\mathbf{X}	${ }^{{ }_{X X \mid Y}(x)}$
1	$(4 / 36) /(15 / 36)=0.2667$
2	$(5 / 36) /(15 / 36)=0.3333$
3	$(6 / 36) /(15 / 36)=0.4$

h) (2 points) Are X and Y independent?

Answers: Since $f_{x y}(1,1)=2 / 36 \neq 9 / 36 * 9 / 36=2 f_{x}(x) f_{y}(y), X$ and Y are not independent.
i) (2 points) What is the covariance for X and Y ?

Answers: $\operatorname{cov}(X, Y)=\langle X Y\rangle-\left\langle X><Y>=(1 / 36)^{*}\left(2 * 1+3^{*} 2+4^{*} 3+3^{*} 2+4^{*} 4+5^{*} 6+4^{*} 3+5^{*} 6+6^{*} 9\right)-\right.$
$2.167 * 2.167=-0.0292$
j) (2 points) What is the correlation for X and Y ?

Answers: $\operatorname{corr}(X, Y)=-0.0292 / 0.6389=-0.0457$
2. (6 points) A random variable X has density function $f(X=x)=c\left(x+x^{3}\right)$ for $x \in[0,1]$ and $f(X=x)=0$ otherwise.
a) (3 points) Determine c.

Answer: c = 4/3.
b) (3 points) Compute $E(1 / X)$

Answer: $E(1 / X)=16 / 9$
3. (10 points) Toss an unfair coin 4 times. The probability of head is 0.6 and that of tail is 0.4 . Let X be the total number of heads among the first two tosses and Y the total number of heads among the last two tosses.
a) (4 points) Write down the joint probability mass fraction of X and Y. Answers:

x / y	0	1	2	Margin
0	$0.4^{4}=0.0256$	$0.4^{2} \times 2 \times 0.6$ $\times 0.4=0.0768$	$0.4^{2} \times 0.6^{2}$ $=0.0576$	0.16
1	$2 \times 0.6 \times 0.4 \times 0.4^{2}$ $=0.0768$	$2 * 0.4 * 0.6 \times 2$ $\times 0.6 \times 0.4$ $=0.2304$	$2 \times 0.6 \times 0.4$ $\times 0.6^{2}=0.1728$	0.48
2	$0.6^{2} \times 0.4^{2}$ $=0.0576$	$0.6^{2} \times 2 \times 0.6$ $\times 0.4=0.1728$	$0.6^{4}=0.1296$	0.36
Margin	0.16	0.48	0.36	1.00

b) (2 points) Are X and Y independent? Please explain. Answers: Independent.
c) (4 points) Compute the conditional probability $P(X \geq Y \mid X \geq 1)$

Answers: $P(X \geq Y \mid X \geq 1)=\frac{P(X \geq Y, X \geq 1)}{P(X \geq 1)}=\frac{0.0768+0.2304+0.1296+0.1728+0.0576}{0.48+0.36}=0.7943$
4. (6 points) A random variable X is the average of p independent random variables X_{k}, i.e., $X=$ $\frac{1}{p} \sum_{k=0}^{p} X_{k}$, Calculate the expectation and the variance of X for three different cases:
a) (2 points) When all X_{k} are independent uniform continuous random variables in the interval $(0,1)$

Answers: $E(X)=\frac{1}{2}, V(X)=\frac{1}{12 p}$
b) (2 points) When all X_{k} are independent exponential random variables with PDF $P\left(X_{k}=\right.$ $x)=\lambda_{k} e^{-\lambda_{k} x}$

Answers: $E(X)=\frac{1}{p} \sum_{k} \lambda_{k}^{-1}, V(X)=\frac{1}{p^{2}} \sum_{k} \lambda_{k}^{-2}$
c) (2 points) When all X_{k} are Independent normal random variables but each one has its own mean μ_{k} and its own standard deviation σ_{k}

Answers: $E(X)=\frac{1}{p} \sum_{k} \mu_{k}, V(X)=\frac{1}{p^{2}} \sum_{k} \sigma_{k}^{2}$
5. (4 points) Suppose random variables X, Y have standard derivations, $\sigma_{X}=2$ and $\sigma_{Y}=6$, respectively, and correlation coefficient $\operatorname{corr}(\mathrm{X}, \mathrm{Y})=-1 / 3$.
(a) (2 points) Find $\operatorname{cov}(X, Y)$.

Answer: $\operatorname{cov}(X, Y)=\operatorname{Corr}(X, Y) * \sigma_{X} * \sigma_{Y}=-4$
(b) (2 points) Find $\operatorname{Var}(3 X-2 Y)$.

Answers: $\operatorname{Var}(4 X-2 Y)=9 * \operatorname{Var}(X)+4 * \operatorname{Var}(Y)-12 * \operatorname{Cov}(X, Y)=9 * 4+4 * 36-12 *$ $(-4)=228$
6. (12 points) Time interval separating subsequent bus arrivals at a stop is an exponential random variable with mean 20 minutes. Steve and Andrew work at the same place and each will be late to work unless they board a bus on or before 8:40am. Steve comes to the bus stop exactly at 8am. Andrew also comes to the same bus stop but at a random time, uniformly distributed between 8am and 8:30am. Both of them take the first bus that arrives.
(a) (4 points) What is the probability that Steve will be late for work tomorrow?

Answers: $P($ Steve late $)=1-P(T<40)=1-\frac{1}{20} \int_{0}^{40} e^{-t / 20} d t=e^{-2}=0.1353$
(b) (4 points) What is the probability that Andrew will be late for work tomorrow?

Answers: $P($ Andrew late $)=\int_{0}^{30} \frac{d x}{30} P(T>=40 \mid T>x)=\int_{0}^{30} \frac{d x}{30} e^{-(40-x) / 20}=\frac{e^{-2}}{30} \int_{0}^{30} e^{x / 20} d x=$ $\frac{20 e^{-2}}{30}\left(e^{30 / 20}-1\right)=0.3141$
(c) (4 points) What is the probability that Steve and Andrew will ride the same bus?

Probability that Steve will not leave by the time x when Andrew comes is $\exp (-x / 20)$. It needs to be integrated over Int_0^30 dx/30 $\exp (-x / 20)=$

Answers: $P($ Steve and Andrew meet $)=\int_{0}^{30} \frac{d x}{30} e^{-x / 20}=\frac{20}{30}\left(1-e^{-30 / 20}\right)=0.5179$

