Homework \#3

Please present 4 significant figures in your final answers for probabilities

1. (20 points) The joint probability mass function of discrete random variables X and Y taking values $x=1,2,3$ and $y=1,2,3$, respectively, is given by a formula $f_{X Y}(x, y)=c^{*}(x+y)$.
Determine the following:
a) (2 points) Find c
b) (2 points) Find probability of the event where $X=1$ and $Y \leqslant 2$
c) (2 points) Find marginal probability $\mathrm{P}_{\mathrm{Y}}(\mathrm{Y}=3)$
d) (2 points) Marginal probability distribution of the random variable X
e) (2 points) $E(X), E(Y), V(X)$, and $V(Y)$
f) (2 points) Find conditional probability distribution of Y given that $\mathrm{X}=1$
g) (2 points) Conditional probability distribution of X given that $\mathrm{Y}=3$
h) (2 points) Are X and Y independent?
i) (2 points) What is the covariance for X and Y ?
j) (2 points) What is the correlation for X and Y ?
2. (6 points) A random variable X has density function $f(X=x)=c\left(x+x^{3}\right)$ for $x \in[0,1]$ and $f(X=x)=0$ otherwise.
a) (3 points) Determine c .
b) (3 points) Compute $\mathrm{E}(1 / \mathrm{X})$
3. (10 points) Toss an unfair coin 4 times. The probability of head is 0.6 and that of tail is 0.4 . Let X be the total number of heads among the first two tosses and Y the total number of heads among the last two tosses.
a) (4 points) Write down the joint probability mass fraction of X and Y .
b) (2 points) Are X and Y independent? Please explain.
c) (4 points) Compute the conditional probability $P(X \geq Y \mid X \geq 1)$
4. (6 points) A random variable X is the average of p independent random variables X_{k}, i.e., $X=$ $\frac{1}{p} \sum_{k=0}^{p} X_{k}$, Calculate the expectation and the variance of X for three different cases:
a) (2 points) When all X_{k} are independent uniform continuous random variables in the interval $(0,1)$
b) (2 points) When all X_{k} are independent exponential random variables with PDF $P\left(X_{k}=\right.$ $x)=\lambda_{k} e^{-\lambda_{k} x}$
c) (2 points) When all X_{k} are Independent normal random variables but each one has its own mean μ_{k} and its own standard deviation σ_{k}
5. (4 points) Suppose random variables X, Y have standard derivations, $\sigma_{X}=2$ and $\sigma_{Y}=6$, respectively, and correlation coefficient $\operatorname{corr}(\mathrm{X}, \mathrm{Y})=-1 / 3$.
(a) (2 points) Find $\operatorname{cov}(X, Y)$.
(b) (2 points) Find $\operatorname{Var}(3 X-2 Y)$.
6. (12 points) Time interval separating subsequent bus arrivals at a stop is an exponential random variable with mean 20 minutes. Steve and Andrew work at the same place and each will be late to work unless they board a bus on or before 8:40am. Steve comes to the bus stop exactly at 8am. Andrew also comes to the same bus stop but at a random time, uniformly distributed between 8am and 8:30am. Both of them take the first bus that arrives.
(a) (4 points) What is the probability that Steve will be late for work tomorrow?
(b) (4 points) What is the probability that Andrew will be late for work tomorrow?
(c) (4 points) What is the probability that Steve and Andrew will ride the same bus?
