Homework #3

Please present 4 significant figures in your final answers for probabilities

- (20 points) The joint probability mass function of discrete random variables X and Y taking values x = 1, 2, 3 and y = 1, 2, 3, respectively, is given by a formula f_{XY}(x, y) = c*(x + y). Determine the following:

 (2 points) Find c
 - b) (2 points) Find probability of the event where X = 1 and Y \leq 2
 - c) (2 points) Find marginal probability $P_Y(Y = 3)$
 - d) (2 points) Marginal probability distribution of the random variable X
 - e) (2 points) E(X), E(Y), V(X), and V(Y)
 - f) (2 points) Find conditional probability distribution of Y given that X = 1
 - g) (2 points) Conditional probability distribution of X given that Y = 3
 - h) (2 points) Are X and Y independent?
 - i) (2 points) What is the covariance for X and Y?
 - j) (2 points) What is the correlation for X and Y?
- **2.** (6 points) A random variable X has density function $f(X = x) = c(x + x^3)$ for $x \in [0,1]$ and f(X = x) = 0 otherwise.
 - a) (3 points) Determine c.
 - b) (3 points) Compute E(1/X)
- **3.** (10 points) Toss an unfair coin 4 times. The probability of head is 0.6 and that of tail is 0.4. Let X be the total number of heads among the first two tosses and Y the total number of heads among the last two tosses.
 - a) (4 points) Write down the joint probability mass fraction of X and Y.
 - b) (2 points) Are X and Y independent? Please explain.

- c) **(4 points)** Compute the conditional probability $P(X \ge Y | X \ge 1)$
- **4.** (6 points) A random variable X is the average of p independent random variables X_k , i.e., $X = \frac{1}{n} \sum_{k=0}^{p} X_k$, Calculate the expectation and the variance of X for three different cases:
 - a) (2 points) When all X_k are independent uniform continuous random variables in the interval (0,1)
 - b) (2 points) When all X_k are independent exponential random variables with PDF $P(X_k = x) = \lambda_k e^{-\lambda_k x}$
 - c) (2 points) When all X_k are Independent normal random variables but each one has its own mean μ_k and its own standard deviation σ_k
- **5.** (4 points) Suppose random variables X, Y have standard derivations, $\sigma_X = 2$ and $\sigma_Y = 6$, respectively, and correlation coefficient corr(X, Y) = -1/3.
 - (a) (2 points) Find cov(X, Y).
 - (b) (2 points) Find Var(3X 2Y).
- **6.** (**12 points**) Time interval separating subsequent bus arrivals at a stop is an exponential random variable with mean 20 minutes. Steve and Andrew work at the same place and each will be late to work unless they board a bus on or before 8:40am. Steve comes to the bus stop exactly at 8am. Andrew also comes to the same bus stop but at a random time, uniformly distributed between 8am and 8:30am. Both of them take the first bus that arrives.
 - (a) (4 points) What is the probability that Steve will be late for work tomorrow?
 - (b) (4 points) What is the probability that Andrew will be late for work tomorrow?
 - (c) (4 points) What is the probability that Steve and Andrew will ride the same bus?